Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Optimizing Long Term Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy Duty Fuel Cell Electric Vehicles

2023-04-11
2023-01-0064
The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This paper develops a long-term plan for refueling infrastructure deployment using the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy duty (HD) fuel cell electric commercial vehicles (FCEV).
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Assessing Powertrain Technology Performance and Cost Signposts for Electrified Heavy Duty Commercial Freight Vehicles

2024-04-09
2024-01-2032
Adoption of fuel cell electric vehicles (FCEV) or battery electric vehicles (BEV) in heavy-duty (HD) commercial freight transportation is hampered by difficult technoeconomic obstacles. To enable widespread deployment of electrified powertrains, fleet and operational logistics need high uptime and parity with diesel system productivity/total cost of ownership (TCO), while meeting safety compliance. Due to a mix of comparatively high powerplant and energy storage costs, high energy costs (more so for FCEV), greater weight (more so for BEV), slow refueling / recharging durations, and limited supporting infrastructure, FCEV and BEV powertrains have not seen significant uptake in the HD freight transport market. The use of dynamic wireless power transfer (DWPT) systems, consisting of inductive electrical coils on the vehicle and power source transmitting coils embedded in the roadways, may address several of these challenges.
X