Refine Your Search

Topic

Author

Search Results

Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

ULSAB-Advanced Vehicle Concepts: Safety/Crash Management

2002-03-04
2002-01-0638
The goal of ULSAB-Advanced Vehicle Concepts (AVC) is to develop a platform with the highest number of shared parts possible between two vehicle classes -European C-Class and the North American PNGV-Class concepts. Aggressive targets for mass and safety are considered --all the while maintaining affordable cost and achieving safety goals anticipated for 2004 and beyond. The objective of the CAE analysis of crashworthiness for ULSAB-AVC is to analyze and optimize the vehicle structure to provide the opportunity for development of complete vehicles that will obtain excellent star ratings. This paper will discuss crash safety and crash energy management aspects of the ULSAB-AVC, including important considerations for selecting advanced high-strength steels for crashworthiness applications, body-in-white design and materials selection procedures, BIW concept design and major load paths, and performance against crashworthiness targets.
Technical Paper

The Role of Engine Oil Formulations on Fluid Diagnostics

2002-10-21
2002-01-2677
Historically, vehicle fluid condition has been monitored by measuring miles driven or hours operated. Many current vehicles have more sophisticated monitoring methods that use additional variables such as fuel consumption, engine temperature and engine revolutions to predict fluid condition. None of these monitoring means, however, actually measures a fluid property to determine condition, and that is about to change. New sensors and diagnostic systems are being developed that allow real time measurement of some lubricant physical and/or chemical properties and interpret the results in order to recommend oil change intervals and maximize performance. Many of these new sensors use electrochemical or acoustic wave technologies. This paper examines the use of these two technologies to determine engine oil condition and focuses on the effects of lubricant chemistry on interpreting the results.
Technical Paper

The KA24E Engine Test for ILSAC GF-3.Part 2. Valve Train Wear Response to Formulation Variables

1998-10-19
982626
The work presented here is the second of two papers investigating the KA24E engine test. The first paper characterized the KA24E engine in terms of the physical and chemical operating environment it presents to lubricants. The authors investigated oil degradation and wear mechanisms, and examined the differences between the KA24E and the Sequence VE engine tests. It was shown that while the KA24E does not degrade the lubricant to the extent that occurs in the Sequence VE, wear could be a serious problem if oils are poorly formulated. This second paper examines the wear response of the KA24E to formulation variables. A statistically designed matrix demonstrated that the KA24E is sensitive to levels of secondary zinc dialkyldithiophosphate (ZDP), dispersant and calcium sulfonate detergent. This matrix also showed that the KA24E appears to have good repeatability for well formulated oils and is a reasonable replacement for the wear component of the Sequence VE.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Technical Paper

The Development of Predictive Models for Non-Acidic Lubricity Agents (NALA) using Quantitative Structure Activity Relationships (QSAR)

2005-10-24
2005-01-3900
This study describes the use of Quantitative Structure Activity Relationships (QSAR) to develop predictive models for non-acidic Lubricity agents. The work demonstrates the importance of separating certain chemical families to give better and more robust equations rather than grouping a whole data set together. These models can then be used as important tools in further development work by predicting activities of new compounds before actual synthesis/testing.
Technical Paper

Techniques to Improve Springback Prediction Accuracy Using Dynamic Explicit FEA Codes

2002-03-04
2002-01-0159
Finite Element Analysis (FEA) has been successfully used in the simulation of sheet metal forming process. The accurate prediction of the springback is still a major challenge due to its sensitivity to the geometric modeling of the tools, strain hardening model, yield criterion, contact algorithm, loading pattern, element formulation, mesh size and number of through-thickness integration points, etc. The objective of this paper is to discuss the effect of numerical parameters on springback prediction using dynamic explicit FEA codes. The example used in the study is from the Auto/Steel Partnership High Strength Steel Rail Springback Project. The modeling techniques are discussed and the guidelines are provided for choosing numerical parameters, which influence the accuracy of the springback prediction and the computation cost.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Shifting from Automatic to Continuously Variable Transmissions: A Look at Fluid Technology Requirements

1999-10-25
1999-01-3614
New technologies are being commercialized across the automotive industry to address demands for improved fuel economy, emissions reductions, and improved customer satisfaction. Push-belt continuously variable transmissions (b-CVTs) are beginning to command a significant percentage of the market now dominated by manual and conventional automatic transmissions. In addition, automobile manufacturers plan to introduce the first traction drive toroidal-CVTs to the market place within the next five years. A review of the relative benefits and limitations of each of these automatic transmissions exists in the literature. In this paper we consider how the performance requirements of each of these automatic transmission systems impact automatic transmission fluid technology. The physical characteristics and screen test performance of two commercial ATFs, a b-CVTF, and two traction fluids were examined.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

Polymer Additives as Mist Suppressants in Metalworking Fluids Part IIa: Preliminary Laboratory and Plant Studies - Water Soluble Fluids

1998-02-23
980097
Mist generated from water-soluble fluids used in machining operations represents a potentially significant contribution to worker exposure to airborne particles. Part I of this study [1], discussed polymer additives as mist suppressants for straight mineral oil metalworking fluids (MWF), which have been successfully employed at several locations. This paper focuses on recent developments in polymer mist suppressants for water-based MWF, particularly in the production environment. The polymer developed and tested in this study functions on a similar basis to that for straight oil anti-mist additives. This water soluble polymer suppresses the formation of small mist droplets and results in a distribution of larger droplet sizes. These larger droplets tend to settle out near the point of machining, resulting in a significant decrease in the total airborne mist concentration.
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

New High Strength Steels Applied to the Body Structure of ULSAB-AVC

2001-10-16
2001-01-3042
In the ULSAB Project released in 1998, high strength steels (HSS) were applied to 90 percent of the body and structural components, and a mass saving of 25 percent compared to an average of benchmark vehicles was achieved. In the ULSAB-Advanced Vehicle Concepts (AVC) Project, high strength steels are used for most of the components, but many of these materials are identified as ultra high strength steel (UHSS) grades of advanced high strength steels. These grades include dual phase (DP) from 280 MPa yield (YS) to 1000 MPa tensile (UTS), complex phase (CP) 700/800 MPa (YS/UTS), and martensitic (Mart) 1200 MPa and 1520 MPa (UTS) grades. This paper reviews how these materials are applied to specific parts of the ULSAB-AVC Class-C and Class-PNGV vehicle concepts and the reasons for their selection. It also compares the materials used in the body structures of ULSAB and ULSAB-AVC
Technical Paper

Modeling of Strain Rate Effects in Automotive Impact

2003-03-03
2003-01-1383
This paper deals with the effects of various approaches for modeling of strain rate effects for mild and high strength steels (HSS) on impact simulations. The material modeling is discussed in the context of the finite element method (FEM) modeling of progressive crush of energy absorbing automotive components. The characteristics of piecewise linear plasticity strain rate dependent material model are analyzed and various submodels for modeling of impact response of steel structures are investigated. The paper reports on the ranges of strains and strain rates that are calculated in typical FEM models for tube crush and their dependence on the material modeling approaches employed. The models are compared to the experimental results from drop tower tests.
Technical Paper

Modeling and Experimental Correlation of Pickup Box Drum Drop Test

2003-03-03
2003-01-0604
Pickup box drum drop test is critical in vehicle development to determine the impact strength of the floor panels. Physical hardware tests on prototypes have been used to assess whether the performance of the future pickup box meets design requirements. In order to reduce costs and shorten development cycle, CAE methodology was developed to accurately model the drum drop test. In this paper, a CAE procedure for modeling the drum drop test is proposed. Dynamic explicit finite element code LS-Dyna was used to simulate the non-linear impact process of a drum onto the box floor. The permanent plastic damages on the floor panel were recorded in both simulation and experiments. Very good correlation between the simulation results and the physical hardware tests was achieved. It indicates that the methodology developed is an effective tool in evaluating the performances of the pickup box floor panels.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
X