Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Truck Braking Standards and Regulations in Japan

1989-02-01
890867
This paper introduces the Japanese standards and regulations of automobiles with brakes as the central subject and clarifies the difference from those of Europe and USA by comparison. Further, this paper describes not only the application status of the standards and regulations in Japan but also the features of structure and performance of Japanese trucks that are designed and produced under such standards and regulations. It can be said that the Japanese trucks are comparatively simple in structure but are in a level equal to or higher than European and USA automobiles in respect of performance. Also in respect of the international harmonization, the internationalization of standards is being conducted in Japan on the basis of ISO and the internationalization for regulations is considered to be under preparation.
Technical Paper

Tractive Torque Steer for On-Center Stability1 Handling Augmentation with Controlling Differential Gear for Large-Sized Vehicles - A Comparison with Passive Read-Axle Steer

1991-11-01
912688
The running direction of a vehicle can be controlled by not only wheel steer but also torque steer. This paper introduces the tractive torque steer effect produced by a newly developed electropneumatic control system, the limited-slip differential for large-sized vehicles. This system enhances the vehicle's running stability and controllability by controlling the tractive force of the drive axle. The tractive force maintains a stable running course against disturbances such as road roughness and wind gusts, thereby enhancing the steering response and providing a better feeling of handling to the driver. The system also improves mobility. especially on low-μ roads. It is expected that a single axle equipped with this system will exhibit good performance comparable to that of tandem axle.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

Study on Weave Behavior Simulation of Motorcycles Considering Vibration Characteristics of Whole Body of Rider

2018-10-30
2018-32-0052
In motorcycles, the mass difference between a vehicle and a rider is small and motions of a rider impose a great influence on the vehicle behaviors as a consequence. Therefore, dynamic properties of motorcycles should be evaluated not merely dealing with a vehicle but considering with a man-machine system. In the studies of a simulation for vehicle dynamics, various types of rider models have been proposed and it has already been reported that rider motions have a significant influence on the dynamic properties. However, the mechanism of the interaction between a rider and a vehicle has not been clarified yet. In our study, we focused on weave motion and constructed a full vehicle simulation model that can reflect the influences of the movements of the rider’s upper body and lower body. To construct the rider model, we first measured the vibrational characteristics of a human body using a vibration test bench.
Technical Paper

Study on Exterior Idling Sound Quality Evaluation Method for Diesel Engine Trucks

1999-05-17
1999-01-1739
In diesel engine trucks, the sound quality improvement as well as the noise level reduction is demanded because of their annoying exterior noise. The semantic differential method was applied to evaluate the sound quality of trucks. In order to improve the analytical accuracy, subjects who can evaluate the characteristics of sound quality were statistically selected among all the subjects. Comfortability and powerfulness were extracted as the principal components by using the data of the selected subjects. It has been clarified that the comfortability strongly relates to high frequency element ratio, high frequency level, etc. The powerfulness strongly relates to the Zwicker loudness.
Technical Paper

Study of Pre-chamber Jet Combustion Behavior using a Small Two-stroke Optically Accessible Engine

2022-01-09
2022-32-0076
A small 2-stroke engine can be an effective power source for an electric generator mounted on a series hybrid electric vehicle. In recent years, a technology referred to as pre-chamber jet combustion has attracted attention as a means of enhancing thermal efficiency by improving mixture ignitability. In this study, experiments were conducted to investigate differences in combustion behavior between the application of spark-ignited (SI) combustion and pre-chamber jet combustion to a small, two-stroke engine. The experimental equipment used was a two-stroke, single-cylinder, optically accessible engine with a displacement of 63.3 cm3. Differences between conventional SI combustion and pre-chamber jet combustion were examined by means of in-cylinder pressure analysis, in-cylinder combustion visualization and image processing software. The diameter of the connecting orifice of the pre-chamber was varied between two types.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

Steer-Restoring Torque Controlled Driving Simulator for Developing Steering Road Feel

1991-11-01
912690
A driving simulator system for developing steering road feel has been developed. A new steering gear box or an electronic steering system is installed on the simulator and its road feel and control algorithm are developed according to the characteristics of any vehicle which has been programed into the engineering work-station. The vehicle model programed into the engineering work station runs according to the driver's operations, which are fed through the new steering system to be tested. The steer-restoring torque of the vehicle programed into the engineering work-station is produced by an actuator, and gives the impression through the new system of having been fed back from an actual road.
Technical Paper

Sound Quality of Audible Warning Devices

1993-05-01
931346
A large-size truck is equipped with a variety of audible warning devices. These warning devices are grouped into three categories by their usage, i.e., malfunction type, proximity type and attention type. The sound characteristics of warning sound that are investigated for each type are signal envelope, fundamental frequency and the number of harmonics. Many sounds are synthesized with nine fundamental frequencies, ten or fewer harmonics and two signal envelopes. With volume fixed, these sounds are evaluated using an unpleasantness rating scale, and the functional impression of these sound is also chosen. From the results, the range of fundamental frequencies, the number of harmonics and the shapes of signal envelopes for preferable sound quality are determined.
Technical Paper

Ride Comfort Evaluation of Horizontal Vibration in Tractor-Trailer Considering Human Body Motion of Driver

2013-04-08
2013-01-0992
In a tractor-trailer, ride comfort affected by horizontal human body motions, so called “wavy” and “shaky” feelings, is at issue. Insight about “wavy” and “shaky” feelings which is important for efficient vehicle development is not enough. Experiments using 6-axis motion generator and motion capture and inverse-analysis using multi-body human model indicated the characteristics of each feeling. Motion observation and transfer function indicated that while a bad subjective score of “wavy” feeling corresponds to same-phase roll motion of chest and pelvis up to 0.7Hz, “shaky” correlates to an antiphase of them around 2Hz. By multiple regression, dominant vibration components of the human body and the vehicle to subjective evaluation of the feelings above were identified. Explanatory variables for the “wavy” feeling are roll rate and lateral jerk and those for the “shaky” are lateral acceleration and longitudinal acceleration.
Technical Paper

R&D and Analysis of Energy Consumption Improvement Factor for Advanced Clean Energy HEVs

2005-10-24
2005-01-3828
Ultra-low energy consumption and ultra-low emission vehicle technologies have been developed by combining petroleum-alternative clean energy with a hybrid electric vehicle (HEV) system. Their component technologies cover a wide range of vehicle types, such as passenger cars, delivery trucks, and city buses, adsorbed natural gas (ANG), compressed natural gas (CNG), and dimethyl ether (DME) as fuels, series (S-HEV) and series/parallel (SP-HEV) for hybrid types, and as energy storage systems (ESSs), flywheel batteries (FWBs), capacitors, and lithium-ion (Li-ion) batteries. Evaluation tests confirmed that the energy consumption of the developed vehicles is 1/2 of that of conventional diesel vehicles, and the exhaust emission levels are comparable to Japan's ultra-low emission vehicle (J-ULEV) level.
Technical Paper

One Approach to Definition of MSILs and Their Connections with ASILs

2014-11-11
2014-32-0016
ISO 26262 (Road vehicles - Functional safety), a functional safety standard for motor vehicles, was published in November 2011. In this standard, hazardous events associated with each item constituting a safety-related system are assessed according to three criteria, namely, Severity, Exposure, and Controllability, thereby determining ASILs (Automotive Safety Integrity Levels) representing safety levels for motor vehicles. Although motorcycles are not included in the scope of application of the current edition of ISO 26262, it is expected that motorcycles will be included in the next revision. However, it is not appropriate to directly apply ASILs to motorcycles. In the first place, the situation of usage in practice presumably differs between motorcycles and motor vehicles. Accordingly, in this research, we attempted to newly define Motorcycle Safety Integrity Levels (MSILs).
Technical Paper

On a Development of Two Wheeled Vehicle Riding Simulator

1997-10-27
978501
This paper describes a fundamental design for a riding simulator of two wheeled vehicle which is used to analyze the human factor of riders. At the first step of this research, the relationship between the movement of rider and behavior of a two wheeled vehicle is inquired with experiments on a proving ground. Based on the results, the degrees of freedom which is required by simulator and main input of rider are settled. This study goes along examination of the expression method of simulated movements, and production of the riding simulator.
Technical Paper

New Medium Duty Truck Model “HINO FA14 Series” for the U.S. Market

1988-10-01
881852
Hino Motors is about to launch a new truck model FA as a family product of the model FB class 5 category trucks which have been sold since 1986, Model FA, a class 3 category cab-over-engine truck has a GVW of 13,500 Lbs. and is powered by a 3.8 liter direct injection turbocharged diesel engine which produces 125 HP in conformity with federal exhaust gas emission regulations for 50 states. The new truck was designed and developed to satisfy several principal design objectives such as excellent maneuverability, driving comfort, superior fuel economy as well as sufficient reliability and durability within the simplest possible structure. This paper describes its design objectives, features focusing on cab and engine and technologies devoted to the development.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Influence of Initial Turbulence in RCM on Spontaneous Ignition of End Gas under SI Combustion

2015-09-01
2015-01-1876
The influence of the eddy scale of initial turbulence in RCM on the pressure rise rate after spontaneous ignition of end gas was investigated. The combustion time of the end gas after spontaneous ignition was observed by using high-speed direct photography. As a result, the large scale eddy reduced the pressure rise rate after spontaneous ignition. The temperature inhomogeneity of end gas was higher with the large scale eddy. The combustion time of end gas after spontaneous ignition was prolonged by variation in local ignition delay due to inhomogeneity. The large scale eddy may prevented the knocking occurrence.
Technical Paper

Improvement of Van Type Truck Aerodynamics

1987-11-08
871237
To reduce the vehicle fuel consumption at high speed, it is very effective to minimize the aerodynamic resistance of the vehicle, which forms most of the vehicle running resistance at high speed. This paper presents a reduction of the aerodynamic resistance of van type truck through the wind tunnel tests using 1/5 scaled model. Firstly, the aerodynamically desirable cab shape for cargo type truck is investigated by changing main cab shape factors such as corner curvatures. Secondly, several effective attachments for Van type truck are investigated, and lastly, the effect of these aerodynamic improvements on the fuel consumption are clearified by vehicle running test.
X