Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Technical Paper

The Development on Cold Forging Technique to form a Component of the Constant Velocity Joint

1985-02-01
850353
Cold forging has been applied to form a component of the constant velocity joint. This part, slide joint housing, is made of JIS S48C (SAE 1048) high carbon steel. As it has been very difficult to form this part by cold forging, it has been formed by hot forging up until now. Success was obtained in forming this part by cold forging through improving the chemical composition of S48C high carbon steel and tool design, determining the optimum condition for heat treating the slug, and using a TiC coated punch. Since this slide joint housing, which is nearly net shape, was able to be formed through this cold forging technique, material saving was improved about 40% and machining time was reduced much in comparison with hot forging. Manufacturing cost can be greatly reduced through this cold forging which has been developed.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

The Development of Driveability Index and the Effects of Gasoline Volatility on Engine Performance

1995-10-01
952521
To reduce engine exhaust emissions, we have had to deal with this global environmental problem from the fuel side by introducing oxygenated fuels, reducing the RVP and using low aromatics. But when we change the fuel components and distillation, we must take note about how these affect the engine driveability. We have used T50, T90, RVP and so on as the fuel index up to the present. It is possible to characterize the fuel from one aspect, but these indexes don't always represent the real feature of the fuel. In this paper we propose a New Driveability Index (here in after referred to as NDI) that is more realistic and accurate than the other fuel indexes. We used a 1600cc DOHC L4 MPI type engine. We used Model Gasolines and Market Gasolines, see Appendix(1), (2) and (3), and tested them according to the Excess Air Ratio Response Test Method (here in after referred to as λ-R Test) that was suggested in SAE paper #930375, and we calculated the NDI statistically.
Technical Paper

Study on Air Bag Systems for Nissan Small-Sized Cars

1974-02-01
740577
This paper outlines the most important characteristics of the practical type air bag now being developed by Nissan Motor Co., Ltd. It explains the results of various occupant protection tests conducted at 16 to 64 km/h (10 to 40 mph) speeds, and the related problems we have encountered. It further discusses the effects of several type of occupant protection systems installed on small-sized cars and the relationships between those effects and limited crash speeds. An examination and analysis of air bag performance test results is also included. Despite all efforts made, there yet remain several problems to be solved. For example, (a) in high-speed collisions it is difficult to reduce femur load by means of air bag systems alone; (b) passengers such as three-year-old infants and 5th percentile female adults display a tendency toward submarining: (c) when the environmental temperature is extremely low, it is difficult for the air bag to meet the MVSS Occupant Protection Requirements.
Technical Paper

Studies of Test Methods for Evaluating Two-Cycle Engine Oils

1972-02-01
720452
In Japan, test methods for evaluating the performance of 2-cycle engine oils have been developed separately by each 2-cycle engine manufacturer. The reason for this is that there are are many differences in engine performance and in lubrication methods. Evaluation through bench tests is used as a valid method for screening engine oils prior to field tests. Field tests are conducted eventually as the most reliable test method for evaluating the performance of engine oils. Yamaha Motor, one of the leading Japanese 2-cycle engine manufacturers, developed a “70 min engine test method” in 1963, which can be conducted in a relatively short period of time with good reproducibility. In this paper, several problems regarding Yamaha's 70 min engine test method are discussed.
Technical Paper

Sinter Diffusion Bonded Idler Sprocket of Automotive Engine

1995-02-01
950390
The key-points in the diffusion bonding technique of green compacts during sintering, are the material compositions, which should be chosen according to their dimensional change during sintering, and the fitting clearance, which should be maintained in the range of press fit. Applying this technique, we have developed sinter-diffusion bonded idler sprockets for automotive engines by comfirming the bonding strength and torsional fatigue strength. And we also have developed a nondestructive analysis method for assuring the joint strength of idler sprockets in the mass production.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

Research Concentrated on An Experimental Method for Protecting Pedestrians

1985-01-01
856115
This paper describes a test procedure in which a dummy and a sled impact tester are used to simulate vehicle-pedestrian accidents for the purpose of investigating pedestrian protection. In the series of tests conducted, the bumper height, hood-edge height, bumper lead, front-end compliance of the vehicle, impact velocity, and other factors were varied in an effort to clarify to what extent modifications to the vehicle front end would contribute to enhanced pedestrian protection. Preliminary test findings obtained with this test procedure are also presented regarding the effects of the front-end shape of the vehicle and the stance of the dummy at the moment of impact.
Technical Paper

Reduction of Powerplant Vibration Level in the Acceleration Noise Region Based on Analysis of Crankshaft System Behavior

1992-09-01
922087
Increased attention has been directed toward noise and vibration characteristics of vehicles in recent years and the performance requirements in this area continue to become more rigorous every year. The acceleration noise in a frequency range of 250 ∼ 800Hz caused by powerplant vibration is important, and there is a need to reduce this noise level. In addition to reducing noise and vibration, however, there is also a growing need to achieve further weight reductions. Consequently, it is essential to reduce the weight of a powerplant without increasing its vibration levels. This make it necessary to predict powerplant vibration characteristics accurately at the planning and design stage so that suitable specifications can be determined. Specifications for reducing powerplant vibration have traditionally been found by experimentation. However, in powerplant excitation tests it has not been possible to take into consideration the effect of the crankshaft system on powerplant vibration.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

On Fatigue Testing of Passenger Car Body Construction

1971-02-01
710261
Fatigue tests on a body in white have been made with torsional load and compared with previous results for assessments, where it was difficult to agree with proving ground tests in evaluating the life. Modifying the above mentioned fault, a programmed fatigue test method on the body in white is presented in this paper. The newly developed programmed fatigue test method is the simultaneous loading of the bouncing and torsional modes to a body in while by an electrohydraulic fatigue testing machine in accordance with the programmed sprung mass accelerations. Applying this method, the comparatively accurate assessment of proving ground test was made at the condition of the body in white, and the development period for body construction was shortened.
Technical Paper

Nissan Oil Econometer Permits the Measurement of Engine Oil Consumption

1981-06-01
810754
A technique has been developed which permits the determination of engine oil consumption on an instantaneous basis. The procedure uses the sulfur in the oil as a tracer. The concentration of sulfur compounds in the exhaust gas is determined using a Flame Photometric Detector (FPD). Special modifications of the FPD reduce the interference of other gases and improve the accuracy of the instrument. Although the unit is operationally simple, its abilities to measure continuously and respond quickly allow it to surpass conventional methods for measurement of oil consumption.
Technical Paper

New PM Valve Seat Insert Materials for High Performance Engines

1992-02-01
920570
Internal combustion engines experience severe valve train wear and the reduction of valve seat and seat insert wear has been a long-standing issue. In this work, worn valve seats and inserts were examined to obtain a fundamental understanding of the wear mechanisms and the results were applied in developing new valve seat insert materials. The new exhaust valve insert material for gasoline engines is a sintered alloy steel containing Co-base hard particles, with lead infiltrated only for inserts used in unleaded gasoline engines. The new intake valve insert material for gasoline engines is a high-Mo sintered steel, obtained through transient liquid phase sintering and with copper precipitated uniformly. This material can be used for both leaded and unleaded gasoline engines. Valve and valve seat insert wear has long been an issue of concern to engine designers and manufacturers.
Technical Paper

New Copper Alloy Powder for Laser-Clad Valve Seat Used in Aluminum Cylinder Heads

2000-03-06
2000-01-0396
A copper alloy powder composed of Cu-14Ni-3Si-2V-2Cr-1.5Fe-1Al-0.5P has been developed for application to laser-clad valve seats. Laser-clad valve seats offer several advantages such as higher engine output and improved fuel economy owing to lower valve head temperature and an increased intake throat diameter compared with conventional press-fit valve inserts made of ferro-based powder metal. Previously, a material having a principal chemical composition of Cu-12Ni-10Co-3Si-2V-2Nb-1.5Fe-1Al was developed to obtain large hard intermetallic compounds. The microstructure of this material is formed by a two-liquid separation reaction, which has been applied to powders of different chemical compositions for laser-clad valve seats of production engines. Although this material shows superior valve seat wear resistance, it has certain drawbacks, including the high cost of the powder, high probability of microcrack formation and low machinability of the laser-clad layer.
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Technical Paper

Mechanism Analysis on LSPI Occurrence in Boosted S. I. Engines

2015-09-01
2015-01-1867
Mechanism of suddenly occurring behavior of low speed pre-ignition (LSPI) in boosted spark ignition (SI) engines was analyzed with various experimental methodologies. Endoscope-visualized 1st cycle of LSPI showed droplet-like luminous flame kernels as the origin of flame propagation before spark ignition. With the oil lubricated visualization engine, droplets flying were observed only after enough accumulation of fuel at piston crevice. Also, it was confirmed that subsequent cycles of LSPI occur only after enough operation time. These results indicated that local accumulation of liner adhered fuel and saturation of oil dilution can be a contributing factor to the sudden occurrence of LSPI.
X