Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Cornering and Braking Behavior Simulation Using a Finite Element Method

2005-04-11
2005-01-0384
This paper presents a vehicle dynamic simulation using a finite element method for performing more accurate simulations under extreme operating conditions with large tire deformation. A new hourglass control scheme implemented in an explicit finite element analysis code LS-DYNA(1) is used to stabilize tire deformation. The tires and suspension systems are fully modeled using finite elements and are connected to a rigid body that represents the whole vehicle body as well as the engine, drive train system and all other interior parts. This model is used to perform cornering and braking behavior simulations and the results are compared with experimental data. In the cornering behavior simulation, the calculated lateral acceleration and yaw rate at the vehicle's center of gravity agree well with the experimental results. Their nonlinear behavior is also well expressed.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

The New Nissan 1.7 Liter 4 Cylinder Diesel Engine

1983-06-06
831008
The new Nissan 1.7 liter 4 cylinder diesel engine has been developed to meet the social requirements for energy conservation. The main objective was to improve fuel economy without sacrificing driveability, and this has been achieved by minimizing engine weight, reducing mechanical friction loss and optimizing the combustion system. The CA series gasoline engine, which is known for its light weight, was chosen as the base engine for dieselization. The swirl chamber combustion system used for the LD28 engine was modified to satisfy the requirements for high power, good fuel economy and low noise. Engine noise has been reduced with the aid of several analytical methods such as laser holography. Special attention has been paid to the reduction of diesel knock which is most offensive to the ear. To install this engine in a small FWD vehicle transversely, much effort went into the minimizing of the engine length and width.
Technical Paper

The Effects of Sulfur on Emissions from a S.I. Engine

1996-05-01
961219
The effects of gasoline volatility (T50 and T90), sulfur content and hydrocarbon types on CO, NOx, total hydrocarbon and speciated hydrocarbons were investigated. The properties of the test gasoline were varied in the range of the Japanese marketplace gasoline, which are characterized by low T50, T90 and low sulfur content. Sulfur content is, especially, regulated under 100 ppm. The Japanese 10.15 mode emissions under hot-transient conditions were measured by using a vehicle equipped with a three-way catalyst. The results indicated that the sulfur content was more effective on exhaust CO, total hydrocarbon and NOx emissions than T50, T90 or hydrocarbon types of gasoline were. The sensitivity to sulfur was different depending on the speciated hydrocarbons. Increasing the sulfur content significantly raised exhaust paraffines, but had no significant effect on olefins. Among the aromatics, the exhaust benzene was most sensitive to sulfur.
Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Technical Paper

The Development on Cold Forging Technique to form a Component of the Constant Velocity Joint

1985-02-01
850353
Cold forging has been applied to form a component of the constant velocity joint. This part, slide joint housing, is made of JIS S48C (SAE 1048) high carbon steel. As it has been very difficult to form this part by cold forging, it has been formed by hot forging up until now. Success was obtained in forming this part by cold forging through improving the chemical composition of S48C high carbon steel and tool design, determining the optimum condition for heat treating the slug, and using a TiC coated punch. Since this slide joint housing, which is nearly net shape, was able to be formed through this cold forging technique, material saving was improved about 40% and machining time was reduced much in comparison with hot forging. Manufacturing cost can be greatly reduced through this cold forging which has been developed.
Technical Paper

The Development of the Suspension System Used on the Nissan Stanza - A New Front-Wheel-Drive Compact Car

1983-06-06
830980
The suspension system of the Nissan Stanza was specifically designed for use on a front-wheel-drive car. It was developed with the idea that the new suspension should be compact and light, and afford a comfortable ride as well as good stability and controllability. Furthermore, it should have excellent noise and vibration characteristics. To achieve these objectives we adapted a strut suspension for both the front and rear, and careful consideration was given to the fundamental specifications. In addition, some new ideas were applied for the layout of the suspension.
Technical Paper

The Development of an Experimental Four-Wheel-Steering Vehicle

1986-03-01
860623
This paper describes the development of a vehicle with four-wheel steering in which the rear wheels can be controlled electronically in addition to the conventional front-wheel steering system. In the method for steering the rear wheels, the side-slip angle at the vehicle's center of gravity is maintained at zero, which improves the basic dynamic properties of the vehicle. This approach allows greater maneuverability at low speed by means of counter-phase rear steering and improved stability at high speed through same-phase rear steering. However, the use of counter-phase rear steering to improve maneuverability gives rise to problems in regard to practicality. In addition, continuously controlled four-wheel steering, using counter-phase at low speed and same-phase at high speed, leads to many other problems regarding practicality because of the strong apparent understeer characteristics.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

The Development of Driveability Index and the Effects of Gasoline Volatility on Engine Performance

1995-10-01
952521
To reduce engine exhaust emissions, we have had to deal with this global environmental problem from the fuel side by introducing oxygenated fuels, reducing the RVP and using low aromatics. But when we change the fuel components and distillation, we must take note about how these affect the engine driveability. We have used T50, T90, RVP and so on as the fuel index up to the present. It is possible to characterize the fuel from one aspect, but these indexes don't always represent the real feature of the fuel. In this paper we propose a New Driveability Index (here in after referred to as NDI) that is more realistic and accurate than the other fuel indexes. We used a 1600cc DOHC L4 MPI type engine. We used Model Gasolines and Market Gasolines, see Appendix(1), (2) and (3), and tested them according to the Excess Air Ratio Response Test Method (here in after referred to as λ-R Test) that was suggested in SAE paper #930375, and we calculated the NDI statistically.
Technical Paper

Technique for Analyzing Swirl Injectors of Direct-Injection Gasoline Engines

2001-03-05
2001-01-0964
This paper describes the numerical and experimental approaches that were applied to study swirl injectors that are widely used in direct-injection gasoline engines. As the numerical approach, the fuel and air flow inside an injector was first analyzed by using a two-phase flow analysis method [VOF (Volume of Fluid) model]. A time-series analysis was made of the flow though the injector and also of the air cavity that forms at the nozzle and influences fuel atomization. The calculated results made clear the process from initial spray formation to liquid film formation. Spray droplet formation was then analyzed with the synthesized spheroid particle (SSP) method. As the experimental approach, in order to measure the cavity factor that represents the liquid film thickness, nozzle exit flow velocities were measured by particle image velocimetry (PIV).
Technical Paper

Study on Parameters Affecting NMOG Measurements and a Method to Improve its Accuracy

1993-03-01
930387
Nissan has developed a non-methane organic gas (NMOG) emission measuring method based on California Air Resources Board (CARB) procedures.1) In addition, a system to analyze the chemical species present in the exhaust gases at Low Emission Vehicles (LEV) and Ultra Low Emission Vehicles (ULEV) levels has been created. It was found that when using an electrically heated catalyst (EHC) to achieve the low emissions for LEV and ULEV levels, the interference between exhaust HC species and the contamination of the analyzing system are a serious problem for the measurement of speciated emissions. The methyl tertiary butyl ether (MTBE) contained in reformulated gasoline can interfere with HC speciation in the Chromatogram, requiring that the automatically speciated results be checked by a trained operator. The low exhaust HC emissions of bags 2 and 3 in the Federal Test Procedure (FTP) are nearly equal to that of the background air utilized in the constant volume sampler (CVS) dilution.
Technical Paper

Study on Air Bag Systems for Nissan Small-Sized Cars

1974-02-01
740577
This paper outlines the most important characteristics of the practical type air bag now being developed by Nissan Motor Co., Ltd. It explains the results of various occupant protection tests conducted at 16 to 64 km/h (10 to 40 mph) speeds, and the related problems we have encountered. It further discusses the effects of several type of occupant protection systems installed on small-sized cars and the relationships between those effects and limited crash speeds. An examination and analysis of air bag performance test results is also included. Despite all efforts made, there yet remain several problems to be solved. For example, (a) in high-speed collisions it is difficult to reduce femur load by means of air bag systems alone; (b) passengers such as three-year-old infants and 5th percentile female adults display a tendency toward submarining: (c) when the environmental temperature is extremely low, it is difficult for the air bag to meet the MVSS Occupant Protection Requirements.
Journal Article

Study of an On-board Fuel Reformer and Hydrogen-Added EGR Combustion in a Gasoline Engine

2015-04-14
2015-01-0902
To improve the fuel economy via high EGR, combustion stability is enhanced through the addition of hydrogen, with its high flame-speed in air-fuel mixture. So, in order to realize on-board hydrogen production we developed a fuel reformer which produces hydrogen rich gas. One of the main issues of the reformer engine is the effects of reformate gas components on combustion performance. To clarify the effect of reformate gas contents on combustion stability, chemical kinetic simulations and single-cylinder engine test, in which hydrogen, CO, methane and simulated gas were added to intake air, were executed. And it is confirmed that hydrogen additive rate is dominant on high EGR combustion. The other issue to realize the fuel reformer was the catalyst deterioration. Catalyst reforming and exposure test were carried out to understand the influence of actual exhaust gas on the catalyst performance.
Technical Paper

Study of a Method for Reducing Drum Brake Squeal

1999-03-01
1999-01-0144
Since the modal density of a drum brake system is higher than that of a disc brake system, it is very difficult to identify the cause of brake squeal. The causes of squeal were examined by both complex eigenvalue analysis and experimental analysis. It was confirmed that a complex eigenvalue analysis of a finite element model, a technique so far generally applied to disc brake squeal studies, was effective in analyzing squeal problems of drum brakes.
Technical Paper

Study of Fuel Dilution in Direct-Injection and Multipoint Injection Gasoline Engines

2002-05-06
2002-01-1647
Fuel dilution is one of the phenomena requiring attention in direct-injection engines. This study examined the factors contributing to increased fuel dilution in direct-injection and conventional multipoint injection gasoline engines, focusing in particular on fuel dilution in the oil pan. The results showed that fuel dilution is affected by fuel consumption, fuel properties and oil/cooling water temperatures in multipoint injection engines. In addition to these factors, fuel injection timing is another factor that increases fuel dilution in direct-injection engines.
Technical Paper

Studies of Test Methods for Evaluating Two-Cycle Engine Oils

1972-02-01
720452
In Japan, test methods for evaluating the performance of 2-cycle engine oils have been developed separately by each 2-cycle engine manufacturer. The reason for this is that there are are many differences in engine performance and in lubrication methods. Evaluation through bench tests is used as a valid method for screening engine oils prior to field tests. Field tests are conducted eventually as the most reliable test method for evaluating the performance of engine oils. Yamaha Motor, one of the leading Japanese 2-cycle engine manufacturers, developed a “70 min engine test method” in 1963, which can be conducted in a relatively short period of time with good reproducibility. In this paper, several problems regarding Yamaha's 70 min engine test method are discussed.
Technical Paper

Sinter Diffusion Bonded Idler Sprocket of Automotive Engine

1995-02-01
950390
The key-points in the diffusion bonding technique of green compacts during sintering, are the material compositions, which should be chosen according to their dimensional change during sintering, and the fitting clearance, which should be maintained in the range of press fit. Applying this technique, we have developed sinter-diffusion bonded idler sprockets for automotive engines by comfirming the bonding strength and torsional fatigue strength. And we also have developed a nondestructive analysis method for assuring the joint strength of idler sprockets in the mass production.
X