Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear Mechanisms of Steel Under Boundary Lubrication in Presence of Carbon Black and Graphite Nano-onions Particles

2008-10-06
2008-01-2461
Both carbon blacks and carbon nano-onions nanoparticles have a spheroidal shape and a nested structure. They can be used to simulate the presence of soots in used engine oils. When added to fully formulated fresh engines oils, these two kinds of particles behave very differently. Carbon black particles are highly abrasive causing a lot of wear of steel surfaces and friction increases. At the opposite, the addition of carbon onions in lubricant leads to a reduction of both friction and wear compared to pure base oil. This shows that there is an opportunity to control wear in engines by changing the structure of soots during the combustion process.
Technical Paper

The Evaluation of the Fuel-Economy Performance of Low-Viscosity Drive-Train Lubricants and the Development of Oils with Improved Fatigue Life

2004-10-25
2004-01-3029
In recent years, progress has been made in reducing the viscosities of manual transmission fluids (MTFs) and automatic transmission fluids (ATFs). Lower viscosities of MTFs and ATFs are expected to improve the fuel economy of automobiles by reducing the viscous resistance. Examples of low-viscosity ATFs already commercially available include Toyota Auto Fluid WS and ZF Friedrichshafen AG's ZNF 13014. This paper first reports methods for measuring the torque transmission efficiency in manual and automatic transmissions. We explain a simple rig test that we developed using an IAE gear test machine, and we describe oil temperature increase tests and torque measurement tests using actual transmissions and fuel economy tests using actual vehicles. Next, we describe the effects of lower viscosities on the torque transfer efficiency as measured with these measurement methods.
Technical Paper

The Effect of Ethanol Fuel on a Spark Ignition Engine

2006-10-16
2006-01-3380
Since ethanol is a renewable source of energy and it contributes to lower CO2 emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed and has a disadvantage of difficult startability at low temperature. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency, and emissions. The combustion characteristics under cold engine conditions are also examined. Ethanol has high anti-knock quality due to its high octane number, and high latent heat of evaporation, which decreases the compressed gas temperature during the compression stroke. In addition to the effect of latent heat of evaporation, the difference of combustion products compared with gasoline further decreases combustion temperature, thereby reducing cooling heat loss.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

New Conceptual Lead Free Overlays Consisted of Solid Lubricant for Internal Combustion Engine Bearings

2003-03-03
2003-01-0244
Two types of new conceptual lead free overlays are developed for automotive internal combustion(IC) engine bearings. The overlays are consisted of molybdenum disulfide(MoS2) and polyamideimide(PAI) resin for binding. One of the overlays is suitable for diesel engines with higher unit load and the other overlay is suitable for gasoline engines with higher sliding velocity. Both overlays indicate good corrosion resistance and wear resistance comparing with conventional lead base overlay. Moreover, higher fatigue resistance is obtained in combination with high performance lead free bearing alloy. These new bearings have the potential to become alternative materials to conventional copper lead bearings with lead base overlay.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles II

2007-07-23
2007-01-2039
JCAPII gasoline workgroup reported vehicle emission study to comprehend the impact of ETBE blending. In previous study, we focused on the compatibility of ETBE blended gasoline with Japanese current gasoline vehicles in-use. Based on recent discussion with ETBE 8% blended gasoline into the market, more information becomes necessary. In this second report, we studied to comprehend the actual emission impact using realistic model fuels using several base stocks. Fuel properties of T50, T90 and aromatic compound content were selected through discussions. Specifications were changed within the range of the market. Both ETBE 0% and 8% were combined for these fuel matrixes. In total, eight fuels and two reference fuels were tested. Two J-ULEV vehicles (one MPI, and a stoichiometric-SIDI) were procured as representatives. We discussed quantitative and qualitative impact toward emissions. Data regarding CO2 and fuel economy change were also reported.
Technical Paper

Influence of New Engine Oil Additives on the Properties of Fluoroelastomers

1998-10-19
982437
Fluoroelastmers are well known for their resistance to heat and fluids, and have become major material for crankcase oil seals. On the other hand, new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper, the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil seal products indicate that dithiocarbamates, friction modifier, have hardening effects on fluoroelastmers. The fluoroelastmer deterioration mechanism is determined by analysis of elastmer samples after immersion in oil.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

Hardfaced Valve and P/M Valve Seat System for CNG and LPG Fuel Engines

2005-04-11
2005-01-0718
When adapted for use in automotive engines, CNG and LPG are considered environmentally friendly compared to gasoline or diesel fuel. However, when these gaseous fuels are used, wear of the valve seat insert and valve face increases if materials meant for use with gasoline are adopted. In comparison to a gasoline engine, the oxide membrane that is formed on the sliding surfaces of the valve face and valve seat insert is limited. As a consequence, adhesion occurs and increased wear of these components is the result. Based on analysis materials that are more compatible with these gaseous fuels were developed.
Technical Paper

Examination of Crack Growth Behavior in Induction Hardened Material under Torsional Fatigue

2011-04-12
2011-01-0198
Since wear resistance and fatigue strength are key requirements for chassis components, induction hardening is widely used to apply compressive stress for controlling crack growth. Therefore, it is crucial that the influence of defects is examined with compressive residual stress applied to parts. In this report, the relationship between crack depth and compressive residual stress is evaluated using a cylindrical specimen and a torsional fatigue test. The test results were found to be consistent with CAE simulations performed in advance. In the future, it will be necessary to make this method applicable to product design to further improve vehicle safety performance.
Technical Paper

Evaluation of Distinctive Oil Bores in Engine Crankshaft for Friction Reduction Purpose

2023-09-29
2023-32-0160
Internal combustion engines will play an important role in the coming decades, even considering targets of carbon neutrality for a sustainable future. This will be especially true in regions where pure electrified vehicle implementation is not yet practical, or for long-range heavy load transportation purposes, even in regions where BEV infrastructure is well established. HEV/PHEV’s importance and contribution to CO2 emission reduction together with carbon neutral fuels such as hydrogen, e-fuel and biomass fuel etc. will remain crucial regardless of region/transport sectors. In this respect, brake thermal efficiency improvements by friction reduction needs further investigation. This is especially so with the crankshaft bearings’ lubrication system, which can provide as much as 40% of the total mechanical losses in some cases. It is a well-established fact, that plain bearings require a minimum oil flow volume to maintain their real function rather than oil pressure.
Technical Paper

Effects of Sulfur, Aromatics, T50, T90 and MTBE on Mass Exhaust Emissions from Vehicles with Advanced Technology - JCAP Gasoline WG STEP II Report -

2003-05-19
2003-01-1905
An overview of STEP II activity of JCAP gasoline working group is presented. The main evaluation of STEP II was conducted with advanced gasoline-powered vehicle and fuel technologies for reducing exhaust emissions. 4 models of prototype vehicles were prepared for evaluation. 3 of them were SIDIs with lean NOx catalysts and another was MPI with three way catalyst. All test vehicles were designed with the target of 1/6 emission level of the FY 1978 Japanese regulations. Sulfur effects were evaluated by 30000km mileage accumulation tests using 2ppm, 22ppm and 86ppm sulfur gasolines. Exhaust emissions of SIDI vehicles were largely affected by the sulfur content but the degree of effect differed between vehicles. For further reduction of SIDI emissions, investigations about “Package technology” of vehicle and fuel - sulfur durability improvement of lean NOx catalyst and sulfur reduction of fuel - with consideration about “Well to Wheels” CO2 are necessary.
Technical Paper

Effectiveness and Issues of Automotive Electric Power Generating System Using Solar Modules

2016-04-05
2016-01-1266
Solar and other green energy technologies are attracting attention as a means of helping to address global warming caused by CO2 and other emission gases. Countries, factories, and individual homes around the world have already introduced photovoltaic energy power sources, a trend that is likely to increase in the future. Electric vehicles powered from photovoltaic energy systems can help decrease the CO2 emmissions caused by vehicles. Unlike vehicles used for solar car racing, it is not easy to equip conventional vehicles with solar modules because the available area for module installation is very small to maintain cabin space, and the body lines of conventional vehicles are also usually slightly rounded. These factors decrease the performance of photovoltaic energy systems and prevent sufficient electric power generation. This research aimed to estimate the effectiveness of a solar module power generating system equipped on a conventional car, the Toyota Prius PHV.
Technical Paper

Driveability Improvement with Innovative Toyota 8 Speed Automatic Transmission Control

2017-03-28
2017-01-1109
To meet increasing driveability expectation and government stringent fuel economy regulations reducing CO2 emissions of passenger cars; Toyota developed a new 8-speed automatic transmission "Direct Shift-8AT". Direct Shift-8AT is the first stepped automatic transmission model based on “TNGA” philosophy. New models which received Direct Shift-8AT are the new Camry, Highlander and Sienna. Direct Shift-8AT has an innovative control method with gear train and torque converter models, providing enhanced driveability and fuel economy performance through high efficiency transmission technology. This paper describes details of the new technology and vehicle performance.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
Technical Paper

Development of an Electronically Controlled Brake System for Fuel-efficient Vehicles

2016-04-05
2016-01-1664
To solve various environmental problems, fuel-efficient vehicles that reduce CO2 emissions as well as exhaust gas emissions have been developed. In such vehicles, a regenerative brake is used to further reduce fuel consumption. Because the market size for such vehicles is expanding, a brake system is required that can be used in a wide range of vehicles extending from internal combustion engine vehicles (ICEVs) to electric vehicles (EVs). In addition, issues such as deceleration fluctuation and brake pedal fluctuation arise because the regenerative brake force is dependent on the vehicle speed. This paper presents a brake system configuration and its element technologies that can replace existing brake systems in different vehicles ranging from ICEVs to EVs. The proposed system can realize a regenerative cooperative brake not only by replacing the brake booster unit but also without replacing the modulator.
Technical Paper

Development of a New Valvetrain Wear Test - The Sequence IVB Test

2016-04-05
2016-01-0891
The study described in this paper covers the development of the Sequence IVB low-temperature valvetrain wear test as a replacement test platform for the existing ASTM D6891 Sequence IVA for the new engine oil category, ILSAC GF-6. The Sequence IVB Test uses a Toyota engine with dual overhead camshafts, direct-acting mechanical lifter valvetrain system. The original intent for the new test was to be a direct replacement for the Sequence IVA. Due to inherent differences in valvetrain system design between the Sequence IVA and IVB engines, it was necessary to alter existing test conditions to ensure adequate wear was produced on the valvetrain components to allow discrimination among the different lubricant formulations. A variety of test conditions and wear parameters were evaluated in the test development. Radioactive tracer technique (RATT) was used to determine the wear response of the test platform to various test conditions.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
X