Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Mechanisms of Methanol Fueled Engine

1985-11-11
852199
The wear mechanisms of the methanol engine were studied using dynamometer tests. Formic acid from methanol combustion mixes with the lubricant oil and attacks the metal surfaces. The iso tacho prorissis method was successfully applied to analyze the formic acid content of the used oil. A large amount of condensed water is also formed by methanol combustion and accelerates the wear. Wear can be effectively reduced by shortening lubricant oil change intervals, by using a special oil and by durable surface treatment of engine parts.
Technical Paper

Visibility Requirements for Automobile CRT Displays - Color, Contrast and Luminance

1988-02-01
880218
Display devices are required to have some fundamental functions which are brightness & gradation, colorfullness, resolution & sharpness, response time, and suitable size of the picture. Since the CRT (Cathode Ray Tube) is superior to the other display devices in these requirements, it can offer much information efficiently and effectively. Their visibility should not be evaluated only on the basis of some standards for office automation systems. From the point of view of human factors, visibility investigations of the CRTs for automobiles are examined. In this paper the relationship between the chromaticity difference and the luminance contrast for drivers to read the picture easily, and the luminance of the background in the CRTs for drivers not to be dazzled in the nighttime driving are clarified.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Using the Modal Response of Window Vibrations to Validate SEA Wind Noise Models

2017-06-05
2017-01-1807
The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
Technical Paper

Understanding of LME Cracking Phenomenon in Spot Welding and Crack Prediction Using FE Analysis

2022-03-29
2022-01-0328
The application of high-strength steel sheets to car bodies is expanding to improve the crashworthiness and achieve weight reduction [1, 2]. Conversely, in recent years, the occurrence of liquid metal embrittlement (LME) cracks has been discussed in resistance spot welding using a Zn-based coated high-strength steel [3-5]. This study examined the factors causing LME cracks and identified the locations of LME cracks found in resistance spot welds using a Zn-coated high-strength steel sheet. Furthermore, through an analytical approach using a scanning electron microscopy (SEM) and transmission electron microscopy (TEM), for a joint with an LME crack, it was found that (1) grain boundary fracture occurred at LME crack portion and its fracture surface was covered with Zn, (2) Zn penetrated into prior-austenite grain boundaries near the LME crack, and (3) Zn concentration decreased toward the tip of the Zn-penetrated site.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Journal Article

Thermal Flow Analysis of Hybrid Transaxle Surface Using Newly-Developed Heat Flux Measurement Method

2015-04-14
2015-01-1652
This research developed a new measurement technology for thermal analysis of the heat radiation from a hybrid transaxle case surface to the air and improved the heat radiation performance. This heat flux measurement technology provides the method to measure heat flux without wiring of sensors. The method does not have effects of wiring on the temperature field and the flow field unlike the conventional methods. Therefore, multipoint measurement of heat flux on the case surface was enabled, and the distribution of heat flux was quantified. To measure heat flux, thermal resistances made of plastic plates were attached to the case surface and the infrared thermography was used for the temperature measurement. The preliminary examination was performed to confirm the accuracy of the thermal evaluation through heat flux measurement. The oil in the transaxle was heated and the amount of heat radiation from the case surface was measured.
Technical Paper

The i-REAL Personal Mobility Vehicle

2011-05-17
2011-39-7242
The need for small personal mobility vehicles is growing as urbanization, the aging of society, traffic congestion, and parking become major issues, particularly in inner-city areas. The aging of society also means that more short trips within communities will be made. The i-REAL personal mobility vehicle is a next-generation single-passenger electric vehicle that enables the driver to move around town using a smaller amount of energy. This compact EV has three wheels: two front wheels driven by in-wheel motors and one rear wheel. According to the driver's needs, the i-REAL switches driving modes by changing its wheelbase. It can go slowly, allowing the driver to meet the eyes of passers-by when driving in parks, on sidewalks, or inside shopping malls. When on the road, it can lower its height and drive quickly like a bicycle or motorcycle. The body of the i-REAL leans automatically based on the speed and the turn angle to maintain the balance of the vehicle for any driver.
Technical Paper

The World's First Transverse 8-Speed Automatic Transmission

2013-04-08
2013-01-1274
We have developed the world's first 8-speed automatic transmission for transverse FWD/4WD vehicles. The aim of this new automatic transmission was to achieve world-class fuel economy while offering both smooth gear shift and sporty shift feeling suitable for luxury cars. This has been accomplished using wide spread gear ratio, outstanding low drag components and highly efficient hydraulic control system. In addition, we have achieved the compactness similar to current 6-speed automatic transmission by adopting new gear train and compact clutch layout. In this paper, the detail of this automatic transmission is introduced.
Technical Paper

The Oil Flow Measuring Method in Engine Lubrication

1999-10-25
1999-01-3467
We have developed a method by which the oil flow rate can be measured by using a hot-wire sensor that could be installed in the passages of actual engine lubricant oil. This measuring method proves to have a ±5% accuracy and a 40kHz response that enables ‘real time’ function. Thus, observation of (1) the effect of bearing clearance, and (2) the fluctuating mechanism of the oil flow per 1 degree crank angle from the point of engine start-up to 6000r/min and full load can be achieved, and the timing and quantity of intermittent oil-jet from the oil hole in connecting rod were ascertained.
Technical Paper

The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1268
Toyota Motor Corporation is developing a series of engines belonging to its ESTEC (Economy with Superior Thermal Efficient Combustion) development concept. This paper describes the development of 8NR-FTS after the subsequent launch of the 2.0-liter DI Turbocharged 8AR-FTS. 8NR-FTS is a 1.2-liter inline 4-cylinder spark ignition downsized turbocharged direct injection (DI) gasoline engine. By following the same basic concepts as 8AR-FTS engine [1], the 8NR-FTS incorporates various fuel efficient technologies such as a cylinder head with an integrated exhaust manifold, the Atkinson cycle using the center-spooled variable valve timing with mid-position lock system (VVT-iW), and intensified in-cylinder turbulence to achieve high-speed combustion.
Technical Paper

The New 2.4-Liter Slant Engine, 2TZ-FE, for the Toyota Previa

1990-09-01
901717
This paper describes a new 2.4-liter 16-valve in-line four-cylinder engine, 2TZ-FE, which has been mounted horizontally on a new minivan, the TOYOTA PREVIA. This engine has the TOYOTA original compact 4-valve DOHC system (scissors gear mechanism), and TOYOTA's newest technologies, such as 75 deg. slant cylinder and Separated accessory Drive System. The compact configuration reduces the height of this engine to only 44Omm (17.3-inches). Engine location is under the flat floor on the midship rear-wheel-drive vehicle and allows the PREVIA to have a spacious cabin with walkthrough. Its high performance, 103kW at 500Orpm and 209Nm at 4000rpm, has been achieved through updated technologies, such as: Knock Controll System (KCS), well studied intake system and exhaust manifold which is made of stainless steel double pipe. At the same time, high reliability and quietness have been achieved for the 2TZ-FE by TOYOTA's updated technologies.
Technical Paper

The Effects of ‘Inclination Angle of Swirl Axis’ on Turbulence Characteristics in a 4-Valve Lean-Burn Engine with SCV

1990-10-01
902139
It has been demonstrated that the in-cylinder turbulence of a 4 valve engine with a swirl control valve (SCV) is enhanced by inclined swirl. This paper examines the effects on turbulence of varying swirl inclination angle defined as the inverse tangent of the vertical component of total angular momentum divided by the horizontal component. Experiments were conducted on a 4-valve single cylinder engine with SCV using a backward-scatter LDV and BSA (Burst Spectrum Analyzer). The results show that although total angular momentum is greatest with horizontal swirl, turbulence intensity measured in the center of the combustion chamber attains a peak value when the swirl inclination angle is between 30 and 45 degrees from the cylinder axis under the same air flow rate.
Technical Paper

The Effect of Fuel Compounds on Pre-ignition under High Temperature and High Pressure Condition

2011-08-30
2011-01-1984
Turbocharged (TC) engines have been introduced these days to improve the fuel economy. It is considered that one possible issue of the TC engine is a pre-ignition at high engine speed because of high temperature and high pressure in the combustion chamber. This study shows the effect of fuel compounds on pre-ignition at 4400rpm. The experimental engine is a naturally-aspirated (NA) engine which is customized to imitate the cylinder temperature and pressure of TC engines. It is known that research octane number (RON) describes anti-knock quality well. Meanwhile the results show that pre-ignition characteristic at high engine speed is dominated by motor octane number (MON) and auto-ignition temperature (AIT) rather than RON.
Technical Paper

The Development of a New V6 3.5L Turbocharged Gasoline Engine

2018-04-03
2018-01-0366
For the launch of the redesigned Lexus LS, a new 3.5 L V6 twin turbo engine has been developed aiming at unparalleled performance on four axes, “driving pleasure”, “power-performance”, “quietness” and “fuel economy”. To achieve outstanding power-performance and high thermal efficiency, the specifications have been optimized for high speed combustion. The maximum torque of 600 Nm, power of 310 kW (yielding specific power of 90 kW/L), and the maximum thermal efficiency of 37% have been achieved using several new technologies including a high efficiency turbocharger. A prototype vehicle equipped with this engine and Direct-Shift 10AT achieved a 0-60 mph acceleration time of 4.6 sec, with extremely good CAFE combined fuel economy of 23 mpg and power-performance aligned with V8 turbocharged offerings from competing OEM’s.
Technical Paper

The Development of Vibration Damping Steel Sheet For Automotive Use

1989-02-01
890708
Vibration Damping Steel Sheet (VDSS) for automotive use, which has a three layer structure of steel/viscoelastic resin/steel, has been studied. For automotive body panels, VDSS is required to have not only high vibration damping capability but also other properties such as bonding strength, formability, weldability and durability. In this research, the effect of resin layer on these properties was studied. It is found that VDSS which satisfies these properties can be made from thermosetting resin involving metal particles.
Technical Paper

Super Olefin Polymer for Material Consolidation of Automotive Interior Plastic Parts

1996-02-01
960296
A new automotive interior component material, TSOP-5 has been developed by refining the technology utilized to develop TSOP-1, the high modulus and high flow material for bumper covers. This new interior component material has excellent molding capability (MI=30dg/min.) yet still maintains high impact resistance which enables the material to be used in areas such as the dash board as well as trim covers requiring to meet the FMVSS 214, the new side impact regulation or the FMVSS 201, the new soft upper trim regulation.
X