Refine Your Search

Topic

Author

Search Results

Technical Paper

Total Gas/Effective Fuel Ratio Predicts Coast Surge in Emission-Control Vehicles

1980-06-01
800827
In the course of developing a low-emission manual transmission vehicle, coast surge in the fore-and-aft direction resulting from the installation of certain emission-control devices was sometimes experienced immediately after the initiation of vehicle deceleration. Our investigation revealed that this vehicle surge was caused by combustion irregularities in a sequence of combustion-misfire-intense combustion events occurring every several cycles. A new combustibility standard. Gt/Feff, defined as the ratio of total cylinder mixture weight Gt to effective fuel weight Feff, was found to predict combustibility and irregular combustion over the entire mixture range. As a result, driveability during deceleration was improved by modifying key emission-control components.
Technical Paper

The Nissan 2.4L In-Line 4-Cylinder Engine

1989-02-01
890776
Nissan's new 2.4-liter in-line, 4-cylinder gasoline engine, the “KA24E,” was developed for the worldwide automobile market, but exclusively for the North American market. It has been released for Nissan's new 1989 model, high-performance sports car, the “240SX”, and will also be mounted in such forthcoming models as the new 1990 “AXXESS”. The major objectives in developing this new engine were to achieve high performance at practical driving speeds, especially at low- and middle-engine speeds, quiet engine operation, reliability, fuel economy and serviceability, all of which are essential factors in daily driving. For realizing these objectives, multi-valves, aerodynamic intake ports, a high-rigidity cylinder block, a silent single timing chain, and hydraulic valve lash adjusters were incorporated into this engine. Furthermore, to develop the engine, almost all components were redesigned using computer design techniques, and checked by extensive testing.
Technical Paper

The Development of Second Generation Ceramic Turbocharger Rotor - Further Improvements in Reliability

1988-02-01
880702
Nissan has developed a second generation ceramic turbocharger rotor which provides greater reliability and higher performance than a conventional ceramic rotor. The new rotor is made of silicon nitride, which has demonstrated sufficient strength in vehicle applications. The bonding technique for joining the ceramic rotor to the metal shaft has been confirmed through experimentation to have sufficient reliability. The second generation rotor is featured by the low stress design and higher dynamic strength, and two factors contribute to its higher reliability. The rotor shape was optimized on the basis of results obtained in two analyses of particle impact resistance and applied combined stress. Test results show that the reliability of the second generation rotor have been substantially improved over those of the conventional rotor now being used on production vehicles.
Technical Paper

Swirl Controlled 4-Valve Engine Improves in Combustion under Lean Air-Fuel Ratio

1987-11-08
871172
Since a 4-valve engine is less flexible in the design and location of the intake ports as compared with a conventional 2-valve engine, there are some difficulties in strengthening the air motion, including swirl and turbulence, in order to achieve stable combustion under lean mixture operation. This study examined air motion imporvements of 4-valve engine that result in a stable combustion with a lean mixture. These improvements are brought about by the installation of a swirl control valve in each intake port. The results of this study have clarified that the lean stable limit was extended from an air-fuel ratio of 21.5 to 26.3 under a partial load, by optimizing the location and diameter of aperture of the swirl control valve.
Technical Paper

Study on Miniaturization of an Air-Cooled Inverter Integrated with Motor

2014-04-01
2014-01-1872
This paper reports about a trial for miniaturization of an air-cooled inverter integrated with motor, which is realized by reduction of the total volume of smoothing capacitor. An integrated system prototype was constructed with a disk-shaped inverter positioned at the rear end of the motor. We examined the possibility of using a ceramic capacitor, which features a higher heat-resistance temperature, lower internal resistance and higher capacity density than a film capacitor. At the same level of capacitance, the volume of a ceramic capacitor is less than one-half that of a film capacitor, enabling the size of the smoothing capacitor to be reduced to approximately one-fifth that of the currently used device. A suitable circuit configuration and physical layout of distributed smoothing capacitors and corresponding power device modules are proposed and demonstrated.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Sources of Hydrocarbon Emissions from a Small Direct Injection Diesel Engine

1987-09-01
871613
The purpose of this paper is to clarify the mechanisms of unburnt hydrocarbon (HC) emissions from a small direct - injection (DI) diesel engine. HC emission levels of small DI diesel engines are considerably higher than those of corresponding indirect - injection (IDI) diesel engines, even when sacless injection nozzles that are effective in reducing HC emissions are installed on them. In this study, analytical engine tests were performed to evaluate the relative significance of various potential sources of HC emissions from a small DI diesel engine equipped with sacless type injectors.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Technical Paper

Research on a Variable Swirl Intake Port for 4-Valve High-Speed DI Diesel Engines

1998-10-19
982680
A variable swirl intake port system for 4 valves/cylinder direct injection diesel engines was developed. This system combines two mutually independent intake ports, one of which is a helical port for generating an ultra-high swirl ratio and the other is a tangential port for generating a low swirl ratio. The tangential port incorporates a swirl control valve that controls the swirl ratio by varying the flow rate. To investigate the performance of the intake port system, steady-state flow tests were conducted in parallel with three-dimensional computations. In conducting the steady-state flow tests, it was found that a paddle wheel flow sensor was not suitable for evaluating the characteristics of the high-swirl port and that it was necessary to use an impulse swirl flow meter.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Potentiality of the Modification of Engine Combustion Rate for NOx Formation Control in the Premixed SI Engine

1975-02-01
750353
In order to study the potentiality of the modification of the combustion rate for NOx formation control in the spark ignition (SI) engine, the authors first developed a new mathematical model by assuming the stepped gas temperature gradient in the cylinder. The predicted results from this new mathematical model show good coincidence with the experimental data. Second, the authors discuss the effects of the modification of the combustion rate on NOx formation using the new mathematical model. It was concluded that NOx formation in the premixed SI engine would be essentially determined by the specific fuel consumption only, regardless of any modification of the engine combustion rate.
Technical Paper

Potentiality of Small DI Diesel Engines Under Consideration of Emissions and Noise Control

1985-06-01
851213
The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noize levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 dB (A) higher than those of the IDI engine.
Technical Paper

Performance and Exhaust Emissions of Nissan FFV NX Coupe

1992-02-01
920299
The FFVs under study operates on either M85 or M0 or any mixture of the two. Nissan has been actively conducting reseach and development on flexible fuel vehicles (FFVs) to explore the possibilities for long-range energy conservation and air quality improvement. The engine converted for use in these FFVs is a 1.6 liter, four-cylinder in-line powerplant, with dual overhead camshafts and four valves per cylinder. It employs the Nissan Variable valve timing Control System (NVCS). The fuel sensor for measuring the methanol concentration in the fuel has been improved both in terms of accuracy and durability. This paper describes the engine performance and exhaust emission levels (formaldehydes unburned methanol and HC emissions) obtained with both M85 and M0.
Technical Paper

Optimization of the Heat Flow Distribution in the Engine Compartment

1993-03-01
930883
The use of higher output engines and more auxiliary units is resulting in greater heat generation in the engine compartment. At the same time, design trends and demands for improved aerodynamic performance are diminishing the cooling air flow rate. These two sets of factors are making the thermal environment in the engine compartment more severe. In this work, heat flow in the engine compartment was investigated by numerical analysis and flow visualization, and flow control devices were devised for optimizing the temperature distribution. This paper discusses the heat flow optimization techniques and presents the results obtained in experiments with an actual vehicle.
Technical Paper

New Trends in Electronic Engine Control - To the Next Stage

1986-03-01
860592
This paper reviews new engine control technologies and future trends, particularly in mechanical and electrical engine control components, the application of modern control theory, and new advances in sensor technologies. A system which utilizes engine cylinder combustion information is representative of these new trends. Like other such sensor systems, the combustion sensor still has problems which must be overcome before practical application is possible. The factors and problems involved in developing this sensor will be discussed, along with how the relationship between sensing information and engine performance can be used to improve engine performance.
Technical Paper

New Fuel Injection Method for Better Driveability

1988-02-01
880420
In our new fuel injection method, the injector for each cylinder is triggered twice per combustion cycle. The first injection is triggered as early as possible to obtain a good fuel mixture quality. The second injection is triggered as late as possible and as close to the intake valve opening so as to obtain a constant air-fuel ratio even during rapid acceleration. Furthermore, in order to prevent, misfire, timing is calculated based on the fuel amount when the fuel injection occurs. Driveability is improved over a wider range of driving conditions while maintaining good fuel economy and omission control.
Technical Paper

New Copper Alloy Powder for Laser-Clad Valve Seat Used in Aluminum Cylinder Heads

2000-03-06
2000-01-0396
A copper alloy powder composed of Cu-14Ni-3Si-2V-2Cr-1.5Fe-1Al-0.5P has been developed for application to laser-clad valve seats. Laser-clad valve seats offer several advantages such as higher engine output and improved fuel economy owing to lower valve head temperature and an increased intake throat diameter compared with conventional press-fit valve inserts made of ferro-based powder metal. Previously, a material having a principal chemical composition of Cu-12Ni-10Co-3Si-2V-2Nb-1.5Fe-1Al was developed to obtain large hard intermetallic compounds. The microstructure of this material is formed by a two-liquid separation reaction, which has been applied to powders of different chemical compositions for laser-clad valve seats of production engines. Although this material shows superior valve seat wear resistance, it has certain drawbacks, including the high cost of the powder, high probability of microcrack formation and low machinability of the laser-clad layer.
Technical Paper

Mixture Formation and Combustion Performance in a New Direct-Injection SI V-6 Engine

1998-05-04
981435
One advantage of a direct-injection S.I. engine is lower fuel consumption due to the use of lean stratified charge combustion. Another advantage is greater power output resulting from evaporation of the fuel in the cylinder. A critical factor in making the most of these advantages is to achieve optimum mixture formation for both stratified and homogeneous charge combustion. To achieve the optimum mixture, the new direct-injection S.I. V-6 engine adopts a piston with a shallow bowl, a valve that changes in-cylinder air motion between swirl and tumble by opening and closing one side of separated air intake port, an air intake port that has optimized inward and port angle to induces swirl in the piston bowl, and a CASTING NET injector that injects the hollow cone spray in a deflected pattern toward the spark plug.
Technical Paper

Measurement of Piston and Piston Ring Assembly Friction Force

1985-10-01
851671
A new method for measuring friction has been developed in order to analyze piston and piston ring assembly friction force during engine operation. While this method does not require extensive modification to the piston or cylinder, two extra compression and expansion strokes each are added at the end of the conventional four-stroke cycle. In these measuring strokes, the gas pressure and temperature are maintained at firing levels, and friction force characteristics of the piston and piston ring assembly are measured continuously while the burned gas is compressed and expanded.
X