Refine Your Search

Topic

Author

Search Results

Technical Paper

The Development of Second Generation Ceramic Turbocharger Rotor - Further Improvements in Reliability

1988-02-01
880702
Nissan has developed a second generation ceramic turbocharger rotor which provides greater reliability and higher performance than a conventional ceramic rotor. The new rotor is made of silicon nitride, which has demonstrated sufficient strength in vehicle applications. The bonding technique for joining the ceramic rotor to the metal shaft has been confirmed through experimentation to have sufficient reliability. The second generation rotor is featured by the low stress design and higher dynamic strength, and two factors contribute to its higher reliability. The rotor shape was optimized on the basis of results obtained in two analyses of particle impact resistance and applied combined stress. Test results show that the reliability of the second generation rotor have been substantially improved over those of the conventional rotor now being used on production vehicles.
Technical Paper

Technologies for Reducing Cold-Start Emissions of V6 ULEVs

1997-02-24
971022
New technologies are needed to reduce cold-start emissions in order to meet the more stringent regulations that will go into effect in Europe (EC2000 or EC2005) and in California (ULEV), especially for larger engines such as 6- and 8-cylinder units. One new technology in this regard is the electrically heated catalyst (EHC). However, the use of EHCs alone is not sufficient to achieve the necessary reduction in emissions. This paper discusses techniques for effectively combining the elements of an EHC system, including the introduction of secondary air into the exhaust, improved control of the air/fuel ratio, and an electric power supply method for EHCs. It is shown that it is more effective to promote exothermic reactions in the exhaust manifold than at the EHC. A suitable method for this purpose is to introduce secondary air into the exhaust near the exhaust valves.
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Technical Paper

Swirl Controlled 4-Valve Engine Improves in Combustion under Lean Air-Fuel Ratio

1987-11-08
871172
Since a 4-valve engine is less flexible in the design and location of the intake ports as compared with a conventional 2-valve engine, there are some difficulties in strengthening the air motion, including swirl and turbulence, in order to achieve stable combustion under lean mixture operation. This study examined air motion imporvements of 4-valve engine that result in a stable combustion with a lean mixture. These improvements are brought about by the installation of a swirl control valve in each intake port. The results of this study have clarified that the lean stable limit was extended from an air-fuel ratio of 21.5 to 26.3 under a partial load, by optimizing the location and diameter of aperture of the swirl control valve.
Technical Paper

Study on Miniaturization of an Air-Cooled Inverter Integrated with Motor

2014-04-01
2014-01-1872
This paper reports about a trial for miniaturization of an air-cooled inverter integrated with motor, which is realized by reduction of the total volume of smoothing capacitor. An integrated system prototype was constructed with a disk-shaped inverter positioned at the rear end of the motor. We examined the possibility of using a ceramic capacitor, which features a higher heat-resistance temperature, lower internal resistance and higher capacity density than a film capacitor. At the same level of capacitance, the volume of a ceramic capacitor is less than one-half that of a film capacitor, enabling the size of the smoothing capacitor to be reduced to approximately one-fifth that of the currently used device. A suitable circuit configuration and physical layout of distributed smoothing capacitors and corresponding power device modules are proposed and demonstrated.
Technical Paper

Study of a High-Power Lithium-Ion Battery for Parallel HEV Application

1999-03-01
1999-01-1155
Our studies of the lithium-ion battery system have shown considerably more power capability than some existing batteries. Based on these results, we have developed a lithium-ion battery for parallel hybrid electric vehicle (PHEV) application. This battery system provides around ten times the specific power of conventional batteries and also achieves high recharging performance and high charge/discharge efficiency. Evaluation results indicate that it is a highly promising energy source for PHEVs.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Optimization of the Heat Flow Distribution in the Engine Compartment

1993-03-01
930883
The use of higher output engines and more auxiliary units is resulting in greater heat generation in the engine compartment. At the same time, design trends and demands for improved aerodynamic performance are diminishing the cooling air flow rate. These two sets of factors are making the thermal environment in the engine compartment more severe. In this work, heat flow in the engine compartment was investigated by numerical analysis and flow visualization, and flow control devices were devised for optimizing the temperature distribution. This paper discusses the heat flow optimization techniques and presents the results obtained in experiments with an actual vehicle.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Exhaust Noise Abatement with Porous Sintered Metal Silencer

1985-02-01
850326
The exhaust system is often one of the main sources of vehicle noise. A new type of exhaust silencer made of porous sintered aluminum and installed at the end of the exhaust tube considerably reduces this noise, with no rise in back pressure. The mechanism of noise abatement is analyzed utilizing fluid dynamic analysis techniques. It is concluded that noise reduction results mainly from the fluid dynamic effects arising from the gas permeability of the material. Among these effects are the boundary layer control effect of the inner flow, flattening of the velocity profile, heat dispersion effect, decrease in turbulence of flow, smoothing of exhaust pulsation, contraction of the mixing region, and the resulting large decrease in the volume of the noise source. In regard to acoustical effect, the sintered metal can be thought of as Helmholtz resonators. The change in the end condition as an acoustic tube also reduces the peak level of acoustic resonance.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Development of the Nissan Fuel Cell Vehicle

2000-04-02
2000-01-1584
Nissan has recently developed and begun driving tests of a fuel cell vehicle equipped with a methanol reformer that produces hydrogen through the use of a catalyst to induce chemical reactions between methanol and water. With this onboard fuel cell system, only methanol in the form of a liquid fuel needs to be supplied, making the system highly practical as an automotive powertrain for near-future application. The Nissan Fuel Cell Vehicle (FCV) adopts a high-efficiency neodymium magnet synchronous traction motor combined with lithium-ion batteries that enable the vehicle to achieve optimum electric power by switching between a fuel cell-powered driving mode and a battery-powered driving mode. This presentation will cover the current status of the FCV development program and driving test results.
Technical Paper

Development of the Aerodynamics of the New Nissan Murano

2015-04-14
2015-01-1542
The new Murano was developed with special emphasis on improving aerodynamics in order to achieve fuel economy superior to that of competitor models. This paper describes the measures developed to attain a drag coefficient (CD) that is overwhelmingly lower than that of other similar models. Special attention was paid to optimizing the rear end shape so as to minimize rear end drag, which contributes markedly to the CD of sport utility vehicles (SUVs). A lower grille shutter was adopted from the early stage of the development process. When open, the shutter allows sufficient inward airflow to ensure satisfactory engine cooling; when closed, the blocked airflow is actively directed upward over the body. The final rear end shape was tuned so as to obtain the maximum aerodynamic benefit from this airflow. In addition, a large front spoiler was adopted to suppress airflow toward the underbody as much as possible.
Technical Paper

Development of an Electric Concept Vehicle with a Super Quick Charging System

1992-02-01
920442
Recent environmental concerns such as atmospheric pollution and energy conservation have intensified the need to develop pollution-free, energy-efficient vehicles. One such solution is the electric automobile which draws its power from rechargeable batteries. There are few vehicles on the road today because present batteries can store very little energy compared with that of a tank of gasoline. To obtain adequate range, this concept vehicle adopts a new battery which can be recharged to 40% of capacity in six minutes. This super quick charging system makes it possible to recharge the batteries at an electric recharging station just as gasoline-powered vehicles are refilled at service stations. The electric concept vehicle also has improved aerodynamics, reduced rolling resistance and a lighter curb weight, which help to assure adequate range.
X