Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Numerical Simulation System for Analyzing Fuel Film Flow in Gasoline Engine

1993-03-01
930326
A new numerical simulation system has been developed which predicts flow behavior of fuel film formed on intake port and combustion chamber walls of gasoline engines. The system consists of a film flow model employing film thickness as a dependent variable, an air flow model, and a fuel spray model. The system can analyze fuel film flow formed on any arbitrary three-dimensional configuration. Fuel film flow formed under a condition of continuous intermittent fuel injection and steady-state air flow was calculated, and comparison with experimental data showed the system possessing ability of qualitative prediction.
Technical Paper

In-Cylinder Temperature Distribution Measurement and Its Application to HCCI Combustion

2006-04-03
2006-01-1202
This paper presents a measurement technique to visualize the distribution of the in-cylinder mixture temperature and an experimental approach for analyzing the effect of the temperature distribution prior to ignition on homogeneous charge compression ignition (HCCI) combustion. First, a visualization technique for mixture temperature distribution based on the temperature dependence of laser induced fluorescence (LIF) was developed. As the next step, measurement of the temperature distribution was applied to an analysis of HCCI combustion. Controlled non-uniform temperature distributions in the mixture prior to ignition were generated by a special intake system with a completely divided intake port having separate electrical heaters.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

Development of Transient Knock Prediction Technique by Using a Zero-Dimensional Knocking Simulation with Chemical Kinetics

2004-03-08
2004-01-0618
A transient knock prediction technique has been developed by coupling a zero-dimensional knocking simulation with chemical kinetics and a one-dimensional gas exchange engine model to study the occurrence of transient knock in SI engines. A mixed chemical reaction mechanism of the primary reference fuels was implemented in the two-zone combustion chamber model as the auto-ignition model of the end-gas. An empirical correlation between end-gas auto-ignition and knock intensity obtained through intensive analysis of experimental data has been applied to the knocking simulation with the aim of obtaining better prediction accuracy. The results of calculations made under various engine operating parameters show good agreement with experimental data for trace knock sensitivity to spark advance.
Technical Paper

Characteristics of Mixture Formation in a Direct Injection SI Engine with Optimized In-Cylinder Swirl Air Motion

1999-03-01
1999-01-0505
This paper presents a study of mixture formation in the combustion chamber of a direct-injection SI engine. In-cylinder flow measurement was conducted using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and visualization of fuel vapor behavior was done using laser-induced fluorescence (LIF). Further, fast response flame ionization detector (FID) was used to measure the hydrocarbon (HC) concentrations in the vicinity of the spark plug. Thereby mixture concentrations in the vicinity of the spark plug, within the mixture distribution observed using LIF, were quantified. Results revealed that an upward flow forms near the center of the cylinder in the latter half of the compression stroke and goes from the piston crown toward the cylinder head. This upward flow is caused by the synergistic effect of the swirl motion generated in the cylinder and the cylindrical bowl provided in the piston crown eccentrically to the central axis of the cylinder.
Technical Paper

Analysis and Prediction of Unburned HCs in a Lean-Burn Engine

2007-04-16
2007-01-0477
Three-dimensional combustion simulation tools together with the Universal Coherent Flamelet Model (UCFM), a flame propagation model, have been applied to SI lean-burn combustion to study the influence of the equivalence ratio on the amount of unburned hydrocarbons (HCs). Unburned HCs from piston-cylinder crevices were taken into the consideration by using a calculation grid incorporating the actual crevice volume and shape and by applying an autoignition model to post-flame phenomena. The calculation results show the general tendencies for the total amount of unburned HCs and their distribution in the combustion chamber.
X