Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Cornering and Braking Behavior Simulation Using a Finite Element Method

2005-04-11
2005-01-0384
This paper presents a vehicle dynamic simulation using a finite element method for performing more accurate simulations under extreme operating conditions with large tire deformation. A new hourglass control scheme implemented in an explicit finite element analysis code LS-DYNA(1) is used to stabilize tire deformation. The tires and suspension systems are fully modeled using finite elements and are connected to a rigid body that represents the whole vehicle body as well as the engine, drive train system and all other interior parts. This model is used to perform cornering and braking behavior simulations and the results are compared with experimental data. In the cornering behavior simulation, the calculated lateral acceleration and yaw rate at the vehicle's center of gravity agree well with the experimental results. Their nonlinear behavior is also well expressed.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
Technical Paper

The Development on Cold Forging Technique to form a Component of the Constant Velocity Joint

1985-02-01
850353
Cold forging has been applied to form a component of the constant velocity joint. This part, slide joint housing, is made of JIS S48C (SAE 1048) high carbon steel. As it has been very difficult to form this part by cold forging, it has been formed by hot forging up until now. Success was obtained in forming this part by cold forging through improving the chemical composition of S48C high carbon steel and tool design, determining the optimum condition for heat treating the slug, and using a TiC coated punch. Since this slide joint housing, which is nearly net shape, was able to be formed through this cold forging technique, material saving was improved about 40% and machining time was reduced much in comparison with hot forging. Manufacturing cost can be greatly reduced through this cold forging which has been developed.
Technical Paper

The Development of an Experimental Four-Wheel-Steering Vehicle

1986-03-01
860623
This paper describes the development of a vehicle with four-wheel steering in which the rear wheels can be controlled electronically in addition to the conventional front-wheel steering system. In the method for steering the rear wheels, the side-slip angle at the vehicle's center of gravity is maintained at zero, which improves the basic dynamic properties of the vehicle. This approach allows greater maneuverability at low speed by means of counter-phase rear steering and improved stability at high speed through same-phase rear steering. However, the use of counter-phase rear steering to improve maneuverability gives rise to problems in regard to practicality. In addition, continuously controlled four-wheel steering, using counter-phase at low speed and same-phase at high speed, leads to many other problems regarding practicality because of the strong apparent understeer characteristics.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

The Development of Second Generation Ceramic Turbocharger Rotor - Further Improvements in Reliability

1988-02-01
880702
Nissan has developed a second generation ceramic turbocharger rotor which provides greater reliability and higher performance than a conventional ceramic rotor. The new rotor is made of silicon nitride, which has demonstrated sufficient strength in vehicle applications. The bonding technique for joining the ceramic rotor to the metal shaft has been confirmed through experimentation to have sufficient reliability. The second generation rotor is featured by the low stress design and higher dynamic strength, and two factors contribute to its higher reliability. The rotor shape was optimized on the basis of results obtained in two analyses of particle impact resistance and applied combined stress. Test results show that the reliability of the second generation rotor have been substantially improved over those of the conventional rotor now being used on production vehicles.
Technical Paper

Technology for distinctive handling performance of the newly developed Electric Vehicle

2011-05-17
2011-39-7207
Electric Vehicle distinctive techniques in order to enhance the vehicle dynamic performance have been studied and applied to Nissan LEAF. From the viewpoint of performance design parameters, this paper introduces the application items focusing on effectuality for the vehicle behavior by means of the yawing motion and the rolling motion control of its vehicle. As the result, the effects of vehicle performance are shown in experimental data.
Technical Paper

Spot-weld Layout Optimization for Body Stiffness by Topology Optimization

2008-04-14
2008-01-0878
In general, the improvement of vehicle body stiffness involves a trade-off with the body weight. The objective of this research is to derive the lightest-weight solution from the original vehicle model by finding the optimized spot-weld layout and body panel thickness, while keeping the body stiffness and number of spot welds constant. As the first step, a method of deriving the optimal layout of spot welds for maximizing body stiffness was developed by applying the topology optimization method. While this method is generally used in shape optimization of continuous solid structures, it was applied to discontinuous spot-weld positions in this work. As a result, the effect of the spot-weld layout on body stiffness was clarified. In the case of the body used for this research, body stiffness was improved by about 10% with respect to torsion and vertical and lateral bending.
Technical Paper

Sinter Diffusion Bonded Idler Sprocket of Automotive Engine

1995-02-01
950390
The key-points in the diffusion bonding technique of green compacts during sintering, are the material compositions, which should be chosen according to their dimensional change during sintering, and the fitting clearance, which should be maintained in the range of press fit. Applying this technique, we have developed sinter-diffusion bonded idler sprockets for automotive engines by comfirming the bonding strength and torsional fatigue strength. And we also have developed a nondestructive analysis method for assuring the joint strength of idler sprockets in the mass production.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

Positioning System with Vision Sensor for Automatic Arc Welding

1986-02-01
860607
This report describes an arc-welding robot system with a vision sensor which Nissan Motor Co., Ltd. has introduced to automate the arc welding line for truck frames. Developed in-house, this system is now in operation on the arc welding line for Nissan Truck frames at Nissan's Kyushu plant. In developing the system, primary emphasis was placed on assuring practicality and high reliability. Included among the prominent features of the system is the capability to detect the welding line of thin panels with a high degree of accuracy and to calculate corrections when needed. To assure the high speed and reliability needed for the production line, the robot and sensor are separated, and the vision sensors are placed at fixed positions. Detection of the welding line and transmission of data to the robots to correct their positions are completed just prior to welding, so as to avoid the effects of noise and the arc flash during welding.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

On-Line Painted Thermal Plastic Exterior Body Panels for Nissan Be-1 and Application to CAE

1988-02-01
880034
This paper describes the plastic body panels developed for the Nissan Be-1 which was released and put on sale in Japan in January 1987. The panels include four body parts: left and right front fenders, front apron and rear apron. They are made of a thermoplastic resin and are produced by injection molding. The top paint coat can be sprayed on all four panels simultaneously with other steel body panels. The panels provide a high-quality appearance that is in no way inferior to the paint quality of steel panels. This is true during initial use as well as over long periods of time. Besides providing weight reductions, they also deliver improved resistance to impacts. CAE process was applied to develop these panels and proved to be quite effective.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Technical Paper

Nissan's New Production System: Intelligent Body Assembly System

1991-02-01
910816
Car makers are working hard today to shorten development and production lead times through the use of flexibile manufacturing systems(FMSs)to meet diversified and individualized customer requirements. To achieve this goal, Nissan has been developing many kinds of new technologies and systems such as: (1) the intelligent body assembly system for body assembly processes; (2) a press die stamping simulation method and unified database for press die manufacturing; (3) a robot and facility teaching system using CAD data; (4) an automated assembly line for trim and chassis assembly operations. These new FMS methods have been implemented in many manufacturing areas, including the stamping shop, body assembly shop, painting shop and trim and chassis shop. This paper focuses mainly on the intelligent body assembly system as a typical example of the new production systems and technologies being developed at Nissan.
Technical Paper

New PM Valve Seat Insert Materials for High Performance Engines

1992-02-01
920570
Internal combustion engines experience severe valve train wear and the reduction of valve seat and seat insert wear has been a long-standing issue. In this work, worn valve seats and inserts were examined to obtain a fundamental understanding of the wear mechanisms and the results were applied in developing new valve seat insert materials. The new exhaust valve insert material for gasoline engines is a sintered alloy steel containing Co-base hard particles, with lead infiltrated only for inserts used in unleaded gasoline engines. The new intake valve insert material for gasoline engines is a high-Mo sintered steel, obtained through transient liquid phase sintering and with copper precipitated uniformly. This material can be used for both leaded and unleaded gasoline engines. Valve and valve seat insert wear has long been an issue of concern to engine designers and manufacturers.
Journal Article

New Hybrid Genetic Algorithm for Pitch Sequence Optimization of CVT Variator Chain

2017-03-28
2017-01-1120
A CVT variator chain system is superior in transmission efficiency to a belt system because of its lower internal friction. However, a chain produces more noise than a belt due to the long pitch length of contact between the pulleys and rocker pins. This study focuses on optimization of the pitch sequence for reducing chain noise. The previous pitch sequence was suitably combined of links of different lengths to improve noise dispersibility for reducing chain noise. First, the object function was defined as the reduction of the peak level of 1st-order chain noise combined with a well-balanced the levels on the low and high frequency sides. Interior background noise consisting of road noise and wind noise have the characteristic that they increase as the frequency decreases.
X