Refine Your Search

Topic

Author

Search Results

Technical Paper

Work Hardening and Strength Analysis of Steel Structure with Special Cross Section

2002-07-09
2002-01-2114
This paper presents the results of a strength analysis of a newly developed steel structure featuring a special cross section achieved with the hydroforming process that minimizes the influence of springback. This structure has been developed in pursuit of further weight reductions for the steel body in white. A steel tube with tensile strength of 590 MPa was fabricated in a low-pressure hydroforming operation, resulting in thicker side walls. The results of a three-point bending test showed that the bending strength of the new steel structure with thicker side walls was substantially increased. A finite element crush analysis based on the results of a forming analysis was shown to be effective in predicting the strength of the structure, including the effect of work hardening.
Technical Paper

Uniform Quenching Technology by Using Controlled High Pressure Gas after Low Pressure Carburizing

2008-04-14
2008-01-0365
To reduce quenching distortion, step gas quenching has been proposed in recent years, which refers to rapid gas cooling of steel from austenitizing temperature to a point above or below Ms temperature, where it is held for a specific period of time, followed by gas cooling. In this study, by using infrared thermography combined with conventional thermocouple, a new temperature monitoring and control system was developed to realize the step gas quenching process of a hypoid ring gear after low pressure carburizing. The test production results indicate that by using the new monitoring and control system, we can control the gas quenching process and the distortion of carburized gear treated by step gas quenching can be reduced significantly compared with standard gas quenching.
Technical Paper

The Development on Cold Forging Technique to form a Component of the Constant Velocity Joint

1985-02-01
850353
Cold forging has been applied to form a component of the constant velocity joint. This part, slide joint housing, is made of JIS S48C (SAE 1048) high carbon steel. As it has been very difficult to form this part by cold forging, it has been formed by hot forging up until now. Success was obtained in forming this part by cold forging through improving the chemical composition of S48C high carbon steel and tool design, determining the optimum condition for heat treating the slug, and using a TiC coated punch. Since this slide joint housing, which is nearly net shape, was able to be formed through this cold forging technique, material saving was improved about 40% and machining time was reduced much in comparison with hot forging. Manufacturing cost can be greatly reduced through this cold forging which has been developed.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Sinter Diffusion Bonded Idler Sprocket of Automotive Engine

1995-02-01
950390
The key-points in the diffusion bonding technique of green compacts during sintering, are the material compositions, which should be chosen according to their dimensional change during sintering, and the fitting clearance, which should be maintained in the range of press fit. Applying this technique, we have developed sinter-diffusion bonded idler sprockets for automotive engines by comfirming the bonding strength and torsional fatigue strength. And we also have developed a nondestructive analysis method for assuring the joint strength of idler sprockets in the mass production.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

On-Line Painted Thermal Plastic Exterior Body Panels for Nissan Be-1 and Application to CAE

1988-02-01
880034
This paper describes the plastic body panels developed for the Nissan Be-1 which was released and put on sale in Japan in January 1987. The panels include four body parts: left and right front fenders, front apron and rear apron. They are made of a thermoplastic resin and are produced by injection molding. The top paint coat can be sprayed on all four panels simultaneously with other steel body panels. The panels provide a high-quality appearance that is in no way inferior to the paint quality of steel panels. This is true during initial use as well as over long periods of time. Besides providing weight reductions, they also deliver improved resistance to impacts. CAE process was applied to develop these panels and proved to be quite effective.
Technical Paper

New PM Valve Seat Insert Materials for High Performance Engines

1992-02-01
920570
Internal combustion engines experience severe valve train wear and the reduction of valve seat and seat insert wear has been a long-standing issue. In this work, worn valve seats and inserts were examined to obtain a fundamental understanding of the wear mechanisms and the results were applied in developing new valve seat insert materials. The new exhaust valve insert material for gasoline engines is a sintered alloy steel containing Co-base hard particles, with lead infiltrated only for inserts used in unleaded gasoline engines. The new intake valve insert material for gasoline engines is a high-Mo sintered steel, obtained through transient liquid phase sintering and with copper precipitated uniformly. This material can be used for both leaded and unleaded gasoline engines. Valve and valve seat insert wear has long been an issue of concern to engine designers and manufacturers.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

High Strength Steel for Cylinder Head Bolt

1984-02-01
840573
JIS SCM440M (SAE4140H), heat treated to the strength level of 120 to 140 kgf/mm2(171 to 199 ksi) -ISO 12.9 class-, is currently used for cylinder head bolts of Japanese passenger cars. Lower alloy steels, such as SAE 1541 for example, have not been substituted for JIS SCM440H so far because of their high susceptibility to delayed fracture. Daido Steel has tackled this problem and succeeded in applying the lower alloy SAE 1541 steel to 12.9 class cylinder head bolts by enhancing the resistance to delayed fracture by reducing impurities, especially sulphur. In this paper mechanical properties and delayed fracture characteristics of SAE 1541-ULS (Ultra Low Sulphur) steel are reported. 1541-ULS (S<0.005%, S+P< 0.020%) shows outstanding resistance to delayed fracture compared to conventional steel. Furthermore, the amount of MnS inclusions decreases remarkably in ULS steel, which results in high toughness.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Extremely Formable Cold Rolled Sheet Steel with Ultra-High Lankford and n Values - Metallurgy and Formabilities

1993-03-01
930783
Extremely formable cold sheet steel with an ultra-high Lankford value of more than 2.5 and an n value of more than 0.27 has been developed. This steel is obtained due to the following factors; using extremely pure IF (Interstitial free) steel, immediate rapid cooling upon completion of rolling in the hot rolling process, a high reduction in the cold rolling process, and a high soaking temperature in the continuous annealing process. This steel sheet shows excellent deep drawability and stretch formability compared with conventional steel sheet (former IF steel and low carbon aluminum-killed steel) as a result of evaluating the limiting drawing ratio and limiting dome height, respectively. This excellent formability is also shown by the model forming tests for simulating the actual stamping of an oilpan and a side-panel. Furthermore, this steel shows the same spot-weldability as that of former IF steel, and zinc phosphatability similar to that of low carbon aluminum-killed steel.
Technical Paper

Exhaust Noise Abatement with Porous Sintered Metal Silencer

1985-02-01
850326
The exhaust system is often one of the main sources of vehicle noise. A new type of exhaust silencer made of porous sintered aluminum and installed at the end of the exhaust tube considerably reduces this noise, with no rise in back pressure. The mechanism of noise abatement is analyzed utilizing fluid dynamic analysis techniques. It is concluded that noise reduction results mainly from the fluid dynamic effects arising from the gas permeability of the material. Among these effects are the boundary layer control effect of the inner flow, flattening of the velocity profile, heat dispersion effect, decrease in turbulence of flow, smoothing of exhaust pulsation, contraction of the mixing region, and the resulting large decrease in the volume of the noise source. In regard to acoustical effect, the sintered metal can be thought of as Helmholtz resonators. The change in the end condition as an acoustic tube also reduces the peak level of acoustic resonance.
Technical Paper

Estimation of the Maximum Load Applied to Automotive Carburized Gears Using an Acoustic Emission Technique

1995-02-01
950668
A study was made of the possibility of using an acoustic emission (AE) technique to estimate the maximum load applied to automotive carburized gears under actual operating conditions. Three-point bending tests done on carburized steel specimens showed that, provided a small crack was induced in the material, AE was not generated until the material was subjected to a higher bending load than the maximum load previously applied. Using this effect, the maximum load applied to gears, in which a crack had been induced during endurance testing, was estimated. Although the estimated maximum load was about 14% higher than the actual load, the AE technique appears to be a promising method for use in the design and durability assurance of carburized parts of automotive powertrains.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Technical Paper

Development of a Wear Resistant Aluminum Alloy for Automotive Components

1999-03-01
1999-01-0350
Hypereutectic Al-Si alloy 390, containing large amounts of hard silicon particles, has mainly been used for wear-resistant alloy applications. In the case of hypereutectic Al-Si alloys, the primary silicon particle size and distribution must be controlled to obtain stable wear resistance. The service life of furnaces and molds is shortened by the high melting and casting temperatures required for controlling primary silicon. Furthermore, machinability is degraded by large primary silicon particles. To overcome these problems, a new wear-resistant Al-Si alloy has been developed which provides good castability and machinability. This alloy also has wear resistance and mechanical properties similar to those of the 390 alloy. Specifically, the problems regarding castability and machinability were solved by decreasing the silicon content of the 390 alloy, but that also reduced wear resistance.
Technical Paper

Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940991
This paper presents a new-generation, lightweight, 3-liter V6 engine that has been developed for use in the next Nissan Maxima. The distinctive features of this new engine, VQ30DE, is its compact, lightweight design and excellent fuel economy. The basic construction of the engine is characterized by its 60-degree V6 configuration, chain-driven DOHC and high-pressure die cast aluminum cylinder block. A two-way cooling system was adopted with the aim of shortening the warm-up time of the cylinder liners. The new engine has been designed to comply with the tougher emission standards, the OBD-II requirements and California's new evaporative emission standard.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
X