Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Surge Reduction Technology during Towing in Parallel HEV Pickup Truck

2022-03-29
2022-01-0613
This paper proposes a technology to reduce vehicle surge during towing that utilizes motors and shifting to help ensure comfort in a parallel HEV pickup truck. Hybridization is one way to reduce fuel consumption and help realize carbon neutrality. Parallel HEVs have advantages in the towing, hauling, and high-load operations often carried out by pickup trucks, compared to other HEV systems. Since the engine, motor, torque converter, and transmission are connected in series in a parallel HEV, vehicle surge may occur when the lockup clutch is engaged to enhance fuel efficiency, similar to conventional powertrains. Vehicle surge is a low-frequency vibration phenomenon. In general, the source is torque fluctuation caused by the engine and tires, with amplification provided by first-order torsional driveline resonance, power plant resonance, suspension resonance, and cabin resonance. This vibration is amplified more during towing.
Technical Paper

Toyota’s New Hybrid Unit “L4A0”

2022-03-29
2022-01-0656
Toyota developed a new hybrid unit “L4A0” for the new Tundra, which creates both good drivability and environmental performance. To ensure off-road, towing performance and typical truck driving characteristics, the unit is based on a transmission with a torque converter and a multi-plate lock up clutch, with a motor-generator and K0 clutch installed between the engine and transmission. The motor-generator and K0 clutch are built into a module, making it possible to create new hybrid units by combining the module with various transmissions. The unit features many different motor controls. For example, in the case of step-in acceleration input, in order to achieve the desired output torque, typically a kick-down shift is necessary [1]; however, by utilizing “L4A0” both high response and high power output is achieved even without a kick-down shift. This is accomplished by assisting the engine with the motor-generator even when the engine torque is delayed at low engine speeds.
Technical Paper

Toyota “ECT-i” a New Automatic Transmission with Intelligent Electronic Control System

1990-02-01
900550
TOYOTA has developed a new automatic transmission, called the A341E. This transmission employs a unique engine and transmission integrated intelligent control system named “ECT-i”, and a high performance “Super Flow” Torque Converter. This control system is capable of total control of engine torque and clutch hydraulic pressure during shifting, which has resulted in very smooth shift without changes over the life of the transmission. The “Super Flow” Torque Converter has a modified geometry optimized by the analysis of internal flow by means of computer simulations, attaining the highest efficiecy in the world. With the use of such systems, this new automatic transmission has improved total performance of the vehicle.
Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

Study of the Prediction Method for Maximum Traction Coefficient

2013-04-08
2013-01-0366
This report proposes a rheological model and a thermal analysis model for oil films, which transmit power through a variator, as a prediction method for the maximum traction coefficient, and then describes the application and verification of this method. The rheological model expresses the conditions inside the contact ellipse using a combination of viscosity and plasticity. The thermal analysis model for oil films was confirmed by comparison of previously obtained temperatures directly measured from the traction contact area of the four-roller experimental apparatus [1]. The measurement used a thin-film temperature sensor and the consistency between the calculated and measured values was verified in the estimation model by reflecting the precise thermal properties of the thin film. Most values were consistent with the calculated values for the middle plane local shear heating model inside the oil film.
Technical Paper

Study of an Integrated Diesel Engine-CVT Control Algorithm for Improving Drivability and Exhaust Emission Performance

2001-10-01
2001-01-3452
Diesel engines have attracted more attention in recent years as one means of reducing carbon dioxide (CO2) emissions from motor vehicles. One of the major issues for diesel engines is exhaust emissions performance. Diesel engines also face various difficulties in providing the driving force demanded by the driver because of their greater inertia than that of gasoline engines. Meanwhile, continuously variable transmissions (CVTs) have been popularized as gearboxes that execute ratio changes continuously without generating shift shock. The aim of this research is to achieve higher levels of drivability and exhaust emissions performance by mating a CVT to a diesel engine and making maximum use of the continuous ratio change capability. An integrated engine-CVT control algorithm that can freely set the driving force and also the engine operating conditions for generating that driving force has been developed through this study.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

Performance of a CVT Fluid for High Torque Transmitting Belt-CVTs

1998-10-19
982675
A new belt-drive continuously variable Transmission (B-CVT) was introduced into the Japanese market in September 1997 by Nissan Motor Co., Ltd. It transmits a maximum torque of 196 Nm and represents a major breakthrough of the torque limit transmitted by B-CVTs, thus opening a new epoch for the automatic transmission. The major features of the CVT are transmission of high torque between a steel belt and pulleys, electronic control of high hydraulic-pressure to pulleys and a torque converter with an electronically controlled lockup clutch engaging at low vehicle speeds. A CVT fluid formulated for this CVT was designed to optimize these features and this paper describes the performance of the CVT fluid in lab-scale tests and an endurance test of the CVT unit. In order to realize high torque transmission between a steel belt and pulleys, high friction between metal/metal contacts is required with normal wear.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Technical Paper

New Slip Ring System for Electromagnetic Coupling in HEV Driveline

2016-04-05
2016-01-1222
This paper describes the slip ring system for a new hybrid system using an electromagnetic torque converter or an electromagnetic coupling. The slip ring system, which enables electric power transmission between a winding rotor and an inverter fixed on a case, is a key component for establishing a new highly efficient hybrid system. Reducing the wear of the brushes in the slip ring system is a major topic of this research. To achieve this objective, brush wear characteristics were investigated using test-piece experiments that simulated the hybrid system environment. By clarifying these characteristics, the structure of a slip ring system for reducing brush wear was identified and a wear prediction method was constructed.
Journal Article

New Hybrid Genetic Algorithm for Pitch Sequence Optimization of CVT Variator Chain

2017-03-28
2017-01-1120
A CVT variator chain system is superior in transmission efficiency to a belt system because of its lower internal friction. However, a chain produces more noise than a belt due to the long pitch length of contact between the pulleys and rocker pins. This study focuses on optimization of the pitch sequence for reducing chain noise. The previous pitch sequence was suitably combined of links of different lengths to improve noise dispersibility for reducing chain noise. First, the object function was defined as the reduction of the peak level of 1st-order chain noise combined with a well-balanced the levels on the low and high frequency sides. Interior background noise consisting of road noise and wind noise have the characteristic that they increase as the frequency decreases.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

2011-04-12
2011-01-1427
Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Technical Paper

New 2.0L I4 Gasoline Direct Injection Engine with Toyota New Global Architecture Concept

2018-04-03
2018-01-0370
Toyota Motor Corporation has developed a new 2.0L Inline 4- Cylinder (I4) Gasoline Direct Injection Engine, the second Naturally Aspirated (NA) engine of the Toyota New Global Architecture (TNGA) engine series, to meet our customers’ expectations for drivability, performance, and fuel economy. The high speed combustion technologies adopted previously in our 2.5 L NA conventional and Hybrid Vehicle (HV) engines for the 2018 Toyota Camry are necessary for high engine power and thermal efficiency. To adopt our high speed combustion technology on engines with different displacements, the turbulence intensity has been defined as the target index of combustion speed. The basic engine structure has been revised by using Computational Fluid Dynamics (CFD) analysis to achieve the combustion target.
Technical Paper

Internal Thrust Force Analysis of CVT Push Belt

2016-10-17
2016-01-2353
A CVT belt is composed of multiple elements and layered rings. Each of these component parts generates loss, including relative slippage caused by the geometrical relationship between the elements and innermost ring layer. An effective way of increasing CVT efficiency is to reduce this slippage. However, since the relative slippage also controls whether the rings transmit constant torque at all times, reducing the slippage will also have an effect on the torque transmission performance of the rings. Therefore, to improve CVT efficiency by reducing the relative slippage, it is first necessary to analyze the changes to torque transmission. However, this slippage is a phenomenon of the inner portion of the belt and it is extremely difficult to identify the internal thrust force when actual load is applied. This paper describes experiments carried out to analyze the changes in each torque transmission ratio when the relative slippage between the elements and innermost ring layer changes.
Technical Paper

Improvement of the High Rigidity Power-Roller Support Structure in a Half-Toroidal CVT

2004-10-25
2004-01-2930
This paper describes the improvement made to the high rigidity power-roller support structure in a dual-cavity half-toroidal CVT to further increase torque capacity. As a result of re-analyzing the function and parts composition of the previous structure, a high rigidity power-roller support structure, which permits power roller movement only in the horizontal direction, has been adopted. This structure enables the thrust and radial stiffness of the power-roller support to be substantially improved over the previous structure.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Technical Paper

Functional Design of a Motor Integrated CVT for a Parallel HEV

1999-03-01
1999-01-0753
We succeeded in developing a parallel hybrid electric vehicle (HEV) with a fuel efficiency in the 10-15 mode more than double that of existing vehicles of the same class of driving performance. A prominent feature of this HEV system is the belt-drive continuously variable transmission (CVT) with built-in traction motor and powder clutch. Adopting a more efficient configuration proved effective in minimizing cost increases and loss of space utility and offered the same reliability provided by existing vehicles. This paper discusses the functional design aspects of the parallel HEV system, which holds great promise for viable mass production.
Technical Paper

Electronically Controlled Torque Split System, for 4WD Vehicles

1986-10-01
861349
The 4WD system is ultimately believed to be the best system for every situation. However, it does not display satisfactory cornering performance when the vehicle is being accelerated. Recognising this fact, we analyzed the influence of the 4WD fore/aft torque split ratio on cornering performance and found that an optimum torque split ratio exists but varies according to the friction coefficient of the road surface and the vehicle driving force. Based on this analysis, we developed a new transfer system for 4WD vehicles, which is able to adjust the fore/aft torque split ratio by means of an electronically controlled multi-plate clutch. Applying this new transfer system to a test vehicle, it was found to be effective in obtaining desired cornering performance. In this paper, we mainly present information derived from the analysis and concerning the electronically controlled torque split system.
Technical Paper

Dynamic-Shock-Absorber-Effect of Engine Mounting System on the Power-Train Vibration

1984-02-01
840255
In this paper, a method which uses the engine mounting system to suppress vibration in the power train is examined. The vibration in the power train can be reduced by tuning the engine mounting system. It has been seen through the results of this analysis that vibration can be reduced by an effect, different from dynamic damper effect, which is known in this paper as the “dynamic shock absorber effect”. Comparing it with the dynamic damper effect, this paper explains the dynamic shock absorber and gives examples of its application in enhancing driveability and reducing clutch judder vibration.
X