Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Mechanisms of Methanol Fueled Engine

1985-11-11
852199
The wear mechanisms of the methanol engine were studied using dynamometer tests. Formic acid from methanol combustion mixes with the lubricant oil and attacks the metal surfaces. The iso tacho prorissis method was successfully applied to analyze the formic acid content of the used oil. A large amount of condensed water is also formed by methanol combustion and accelerates the wear. Wear can be effectively reduced by shortening lubricant oil change intervals, by using a special oil and by durable surface treatment of engine parts.
Technical Paper

Warm-Up Characteristics of Thin Wall Honeycomb Catalysts

1991-02-01
910611
HC emission standards will be tightened during the 1990's in the US. A key issue in reducing HC emission is improving the warm-up characteristics of catalysts during the cold start of engines. For this purpose, studies are under way on reduction of heat mass of ceramic substrates. Reduction of cell walls in substrates to thickness smaller than the current thickness of 12mil or 6mil has resulted in reduced heat mass, and also reduced flow restriction of substrates. The warm-up characteristics of low bulk density catalysts are better than those of high bulk density, i.e., the warm-up characteristics of thinner wall or lower cell density catalysts are better than those of thicker wall or higher cell density catalysts. A relationship between geometric surface area and warm-up characteristics is observed.
Technical Paper

Visualization of the Cavitating Flow inside the Nozzle Hole Using by Enlarged Acrylic Nozzle

2011-08-30
2011-01-2062
In this study, it is purpose to make clear the effect of cavitation phenomenon on the spray atomization. In this report, the cavitation phenomenon inside the nozzle hole was visualized and the pressure measurements along the wall of the nozzle hole were carried out by use of 25-times enlarged acrylic nozzle. For the representatives of regular gasoline, single and two-component fuels were used as a test fuel. In addition, various cavitating flow patterns same as experimental conditions were simulated by use of Barotropic model incorporated in commercial code of Star-CD scheme, and compared with experimental results.
Technical Paper

Venturi Vacuum Transducer Enables Heavy EGR Control

1980-06-01
800824
In order to significantly reduce NOx levels by EGR (Exhaust Gas Recirculation), while maintaining good fuel economy and driveability, the EGR flow rate must be properly and accurately controlled under a variety of engine operating conditions. Toward this objective, a new EGR control system was developed. It utilizes a carburetor venturi vacuum for a stable reference signal that represents the engine operating condition and it controls the EGR flow rate by using a feedback principle to obtain sufficient flexibility compatible with several different engines. Its control characteristics were mathematically analyzed. And it has also been confirmed that the system can automatically compensate for the drift in EGR characteristics. This EGR control system has been utilized in Nissan’s emission control systems in order to comply with the 1978 Japanese Emission Standards and the 1980 U.S. Federal and California Emission Standards.
Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Technical Paper

Using the Modal Response of Window Vibrations to Validate SEA Wind Noise Models

2017-06-05
2017-01-1807
The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
Technical Paper

Unsteady Pressure Analysis of the Wake Flow Behind a Passenger Car Model

1999-03-01
1999-01-0810
This paper describes a system for measuring unsteady pressure at up to 256 spatial points and at frequencies up to 300 Hz. The system consists of commercially available equipment for measuring steady pressures. It is based on the use of electronically scanned pressure (ESP) sensors, 16 A/D converters, and a personal computer to control the whole system and acquire data. The signal outputs through the tubes connecting the pressure taps and the ESP sensors are compensated, as are the phase delays between the scanned signals and the gain variation. A 1/5 scale model of a sedan was used in this experiment. The passenger car model was placed in a wind tunnel equipped with a moving belt, which was operated at the same speed as the uniform flow in the wind tunnel. Pressure measurements were obtained at 252 points in a plane behind the model perpendicular to the uniform flow. Measurements were made with the belt turned on and off.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

Two-hole Injector Improves Transient Performance and Exhaust, Emissions of 4-valve Engines

1987-02-01
870125
One of the main causes of the inadequate transient response of a 4-valve engine was established as being partition wall-wetting. The possibility of resolving this problem by improving fuel atomization was investigated. An air-mix type injector, although producing finer droplets with more uniform distribution, was not found effective in improving transient response. The development of a two-hole injector is described. This new injector produces twin sprays which are directed into the siamese intake ports without wetting the partition wall. As a consequence, the lean A/F ratio excursion is reduced, torque stumble is eliminated and the conversion efficiency of a three-way catalyst is increased.
Technical Paper

Transient Vehicle Exhaust Flow Measurement Techniques

2006-04-03
2006-01-1360
The accuracy of low-level emission measurements has become increasingly important, due to the development and implementation of ULEV, SULEV, and PZEV vehicles. Measurement of these decreasing levels of automotive emissions requires new sampling and measuring techniques. Several alternative emission sampling techniques have been investigated to minimize measurement variability and maximize system repeatability. An alternative technique to obtain accurate low-level emissions measurement from SULEV vehicles is the Bag Mini-Diluter, which uses a proportional signal from an Exhaust Volume Measurement Device to sample vehicle exhaust. Crucial to successful proportional sampling of vehicle exhaust flow is the performance of the Exhaust Flow Measurement Device. This study evaluates an Exhaust Volume Measurement Device commonly used with a Bag Mini-Diluter.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
Technical Paper

Toyota Central Injection (Ci) System for Lean Combustion and High Transient Response

1985-10-01
851675
Lean mixture operation and high transient response has been accomplished by the introduction of newly designed Central Injection (Ci) system. This paper describes the effects of Ci design variables on its performance. Lean mixture operation has been attained by optimizing the injection interval, injection timing and fuel spray angle in order to improve the cylinder to cylinder air-fuel ratio distribution. Both air-fuel distribution and transient engine response are affected by the fuel spray angle. Widening the fuel spray angle improves the air-fuel distribution but worsen the transient engine response. This inconsistency has been solved by off-setting the injector away from the center axis of the throttle body and optimizing the fuel spray angle.
Technical Paper

Toyota Air-Mix Type Two-Hole Injector for 4-Valve Engines

1991-10-01
912351
An air-mix type 2-hole injector has been developed for 4-valve engines. In order to finely atomize the fuel whilst maintaining the separation of the twin sprays that assures minimal wetting of the partition between the siamese ports, the location of the air inlet passages was optimized and studies were conducted to determine the appropriate geometry of the fuel separation portion of the adapter. High speed photographs verify that the finalized adapter realizes centralized fuel flow through the splayed conduits so that the maximum air entrainment is achieved. This new injector both improves transient response and reduces HC emissions under all temperature conditions. It further enables injection timing to be retarded to the intake stroke at the same low HC level.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

1996-05-01
961125
Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
X