Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Structurally Integrated Location and Reference Features in the Assembly of Large Aerospace Structures

2000-09-19
2000-01-3024
This paper considers rhe use of structurally integrated location and reference features to simplify and to reduce the lead time and costs of assembling large aerospace structures. The location features are selected to fulfil a specific function based on restraint requirements and the necessary degree of precision to ensure that the Product Key Characteristics are achieved. Analysis of how to use structurally integrated location and reference features, indicates that their introduction will not be successful unless there is an integrated design team with a thorough understanding of the manufacturing processes and capabilities, the assembly processes, and the enabling technologies. The assembly of a single nose rib to a section of front spar is used as a typical assembly problem. Three alternative assembly processes are briefly described and used to illustrate the need for the industry to adopt an holistic approach to the design of aerostructure.
Technical Paper

Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations

2016-09-27
2016-01-2108
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
Research Report

Unsettled Issues on Human-Robot Collaboration and Automation in Aerospace Manufacturing

2020-11-30
EPR2020024
This SAE EDGE™ Research Report builds a comprehensive picture of the current state-of-the-art of human-robot applications, identifying key issues to unlock the technology’s potential. It brings together views of recognized thought leaders to understand and deconstruct the myths and realities of human- robot collaboration, and how it could eventually have the impact envisaged by many. Current thinking suggests that the emerging technology of human-robot collaboration provides an ideal solution, combining the flexibility and skill of human operators with the precision, repeatability, and reliability of robots. Yet, the topic tends to generate intense reactions ranging from a “brave new future” for aircraft manufacturing and assembly, to workers living in fear of a robot invasion and lost jobs. It is widely acknowledged that the application of robotics and automation in aerospace manufacturing is significantly lower than might be expected.
Technical Paper

Translating Environmental Legislation into the Engineering Design Domain

2004-03-08
2004-01-0248
The aim of this paper is to present and discuss a case study on how an Original Equipment Manufacturer's technical design center translates and integrates legislative environmental requirements into their product range. The integration of these environmental requirements during the conceptual design phase, where the significant proportion of resources is committed, is of utmost importance. Additionally, with increasing levels of product development being conducted by the first-tier suppliers, there is greater emphasis on the Original Equipment Manufacturer, who controls the product specifications, for translating and filtering the environmental requirements down the supply chain. A Requirements Management based model addressing environmental issues is described.
Technical Paper

The Development of Automated Processes For The Manufacture of Cost-Effective Composite Wing-Boxes

1998-06-02
981839
The manufacturing cost of composite aerostructures is considerably higher than that of equivalent light-alloy ones. There are several reasons for this, but the transfer of the existing technology from military to civil aviation is identified as a major problem. Neither the designs, nor the methods of manufacture, are considered cost-effective when applied to very large, commercially competitive, structures. This problem was among those addressed within a multi-disciplinary, concurrent engineering project sponsored by BAe Airbus and the UK DTI. During the four year programme, alternative manufacturing technology was developed, and Pilot-plant equipment built. The Pilot-plant was successfully used to demonstrate that wing-box components can be more cheaply, more reliably, and more easily manufactured by simple, innovative, easily automated processes.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2007-09-17
2007-01-3870
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robots to conduct assembly tasks within wing boxes - an area currently inaccessible for automation. The composite, single skin construction of aircraft structures presents new assembly challenges. Currently during box close-out it is necessary for aircraft fitters to climb into the wing box through small access panels and use manual or power tools to perform a variety of tasks. In future wing designs it may be that certain parts of the wing do not provide adequate access for manual assembly methods. It is also known that these manual interventions introduce health and safety concerns with their associated costs. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. Such a development has broader implications for aircraft design and assembly.
Technical Paper

Snake-Arm Robots: A New Approach to Aircraft Assembly

2006-09-12
2006-01-3141
This paper describes work being conducted by OC Robotics and Airbus to develop snake-arm robot technology suitable for conducting automated inspection and assembly tasks within wing boxes. The composite, single skin construction of aircraft structures presents new challenges for robotic assembly. During box close-out it is necessary for aircraft fitters to climb into the wing box through a small access panel and use manual or power tools to perform a variety of tasks. These manual interventions give rise to a number of health and safety concerns. Snake-arm robots provide a means to replace manual procedures by delivering the required tools to all areas of the wing box. The advantages of automating in-wing processes will be discussed. This paper presents early stage results of the demonstration snake-arm robot and outlines expectations for future development.
Technical Paper

Simply Supported Retractable Top Beam for Wing Major Assembly Jig

2006-09-12
2006-01-3127
A large free-standing structure is constructed to positively position the spar and related components in the major assembly jig of the wing for a military transport aircraft. The beam of this structure is mounted on mechanisms enabling the lateral retraction of the beam and tooling to provide full part loading access and extraction of a completed wing. The free-standing nature of this design also allows full integration of an automated drilling machine into the jig.
Technical Paper

Sideways Collar Anvil For Use on A340-600

2005-10-03
2005-01-3300
A new method of installing LGP collars onto titanium lock bolts has been brought into production in the Airbus wing manufacturing facility in Broughton, Wales. The feed system involves transporting the collar down a rectangular cross-sectioned hose, through a rectangular pathway in the machine clamp anvil to the swage die without the use of fingers or grippers. This method allows the reliable feeding the collars without needing to adjust the position of feed fingers or grippers relative to the tool centerline. Also, more than one fastener diameter can be fed through one anvil geometry, requiring only a die change to switch between certain fastener diameters. In our application, offset and straight stringer geometries are accommodated by the same anvil.
Technical Paper

Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry

2005-10-03
2005-01-3336
The paper details two phases of work completed by Airbus UK to create a standard deployment platform for robotic processes. The initial part of the paper focuses on an aerospace capability study developed to benchmark a number of robot models. The tests define absolute accuracies within full and restricted work envelopes, static and dynamic flexure, and temperature effects on the robot manipulator. The second part of the paper describes the development of an adaptive control process to accurately position singular or co-operating robots within a large working envelope. The solution is not dependent on complex software algorithms within the robot controller or restrictive laser metrology interfaces. The paper illustrates how a number of standard industrial products can be ‘fused together’ to provide a robust industrial solution.
Technical Paper

Observation of Flow Asymmetry Over the Rear of Notchback Vehicles

2007-04-16
2007-01-0900
This paper presents a series of observations of time-averaged wake asymmetry for a range of “notchback” vehicle geometries. The primary focus is on a reduced scale experiment using full-sized saloon geometry. Substantial flow asymmetry was observed in the vehicle “notch”. Similar asymmetries are reported for a full scale experiment on the same geometry along with others as diverse as production models of a luxury and mid-sized saloon; basic car shapes and a simple body. In one case a physical explanation is proposed, based on the degeneration of an unstable symmetric wake structure.
Technical Paper

Numerical Template

2015-09-15
2015-01-2489
This paper presents an innovative solution of portable drilling machine, lightweight and low cost, dedicated to drilling operations on single and double curved aircraft structure. Aircraft Standard drilling process mainly uses drilling templates combined with Automated Drilling Units (ADU) which is a very efficient solution. However, the management of templates and ADUs is a time consuming and costly task in regards to the large quantity of existing references spread over every aircraft production sites. Therefore, to help reducing those costs and also workload, the concept of the Numerical Template (NCT) has been designed, using classic and robust mechanical devices, hand-held, lightweight and universal. NCT architecture concept could led to a family of NCT with different dimensions of frame parts(X,Y,Z), fitted to the targeted area geometry. The system is able to guaranty an accuracy of ± 0.5 mm and a normality of ±0.5°.
Journal Article

New Guidelines for Implementation of Structural Health Monitoring in Aerospace Applications

2013-09-17
2013-01-2219
The first cross-industry guidelines for the implementation of structural health monitoring for aerospace applications have been created as a SAE International Aerospace Recommended Practices document: SAE ARP 6461 ‘Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft’ [1]. These guidelines have brought together manufacturers, operators / users, systems integrators, regulators, technology providers and researchers to produce information on the integration of SHM into aircraft maintenance procedures, generic requirements and advice on validation, verification and airworthiness. The take-up of SHM in the aerospace industry has been slow, in part due to the lack of accepted industry practices surrounding not just the technology itself (sensors and sensor systems) but also the associated issues arising from the introduction of new methods into aircraft maintenance.
Technical Paper

Modular and Configurable Steel Structure for Assembly Fixtures

2010-09-28
2010-01-1873
This paper will present the latest development of a configurable and modular steel construction system for use in frameworks of flexible fixtures of the kind called Affordable Reconfigurable Fixtures (ART). Instead of a dedicated aircraft fixture, which is very time consuming and expensive, the ART fixtures enable affordable construction from a standard component kit, by solving the main drawbacks of traditional tooling. In early 2009 Airbus UK built the first steel modular fixture for the aerospace industry. The project was a partnership with DELFOi and Linköping University in a project called ReFlex, Reconfigurable Flexible Tooling. A paper was presented in the last year SAE conference which explained about the project in overall. The construction system called BoxJoint has recently been tested in some manufacturing areas at Airbus UK and also been applied in the production at Saab Aerospace Linköping Sweden.
Technical Paper

Mathematical Programming for Optimization of Integrated Modular Avionics

2021-03-02
2021-01-0009
Every state-of-art aircraft has a complex distributed systems of avionics Line Replaceable Units/Modules (LRUs/LRMs), networked by several Data buses. These LRUs are becoming more complex because of an increasing number of new functions need to be integrated into avionics architecture. Moreover, the complexity of the overall avionics architecture and its impact on cable length, weight, power consumption, reliability and maintainability of avionics systems encouraged manufacturers to incorporate efficient avionics architectures in their aircraft design process. The evolution of avionics data buses and architectures have moved from distributed analog and federated architecture to digital integrated modular avionics (IMA). IMA architecture allows suppliers to develop their own LRUs/LRMs capable of specific features that can then be offered to Original Equipment Manufacturers (OEMs) as Commercial-Off-The-Shelf (COTS) products.
Technical Paper

Lug Cutting and Trimming of the Carbon Fibre Wing Panels of the Airbus A400m with Portable Hand Positioned Tools

2007-09-17
2007-01-3795
The Airbus A400m has carbon fibre wing panels on both the upper and lower surfaces. When manufactured, these panels come supplied with various lugs on the periphery of the panel. Some are used for lifting the panel, some are used for indexing the panel; however, all lugs must be removed at some time during wing build. Lug thickness varies from 4mm to 14mm; in addition, many lugs must be cut to a 2D profile rather than just straight. The main challenge of the project was to deliver a tool that was small, portable and compact, but that could also accurately slot thick carbon fibre panels, without de-lamination, leaving a good surface finish. The solution was an air powered routing hand tool that was mechanically guided along a 2D path using a cam profile. Special diamond grit cutters were used to cut the initial slot and reduce the machining forces to a bare minimum, with the finishing cut done using a PCD router bit to obtain a good surface finish.
Technical Paper

Integration Issues for Vehicle Level Distributed Diagnostic Reasoners

2013-09-17
2013-01-2294
In today's aircraft the diagnostic and prognostic systems play a crucial part in aircraft safety while reducing the operating and maintenance costs. Aircraft are very complex in their design and require consistent monitoring of systems to establish the overall vehicle health status. Most diagnostic systems utilize advanced algorithms (e.g. Bayesian belief networks or neural networks) which usually operate at system or sub-system level. The sub-system reasoners collect the input from components and sensors to process the data and provide the diagnostic/detection results to the flight advisory unit. Several sources of information must be taken into account when assessing the vehicle health, to accurately identify the health state in real time. These sources of information are independent system-level diagnostics that do not exchange any information/data with the surrounding systems.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Technical Paper

Force Feedback for Assembly of Aircraft Structures

2010-09-28
2010-01-1872
Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be programmed to achieve a certain force. This paper presents an experimental case where a compliant rib is aligned to multiple surfaces using force feedback and an industrial robot system from ABB. Two types of ribs where used, one full size carbon fiber rib, and one smaller metal replica for evaluation purposes. The alignment sequence consisted of several iterative steps and a search procedure was implemented within the robot control system.
Technical Paper

Flyaway Tooling for Higher Quality, More Cost-Effective, Aerostructure

1998-06-02
981843
Co-production of aircraft is resulting in demands for higher standards of manufacturing quality to ensure that parts and sub-assemblies from different companies and countries are compatible and interchangeable. As a result the existing method of building aerostructure using large numbers of dedicated manufacturing jigs and assembly tools, is now seen as being commercially undesirable, and technologically flawed. This paper considers an alternative, potentially more cost-effective, approach that embraces digital design, manufacturing, and inspection techniques, and in which reference and tooling features are incorporated into the geometry of the component parts. Within the aerospace industry this technology is known as ‘Flyaway Tooling’.
X