Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Three-Dimensional CFD Investigation of Pre-Spark Heat Release in a Boosted SI Engine

2021-04-06
2021-01-0400
Low-temperature heat release (LTHR) in spark-ignited internal combustion engines is a critical step toward the occurrence of auto-ignition, which can lead to an undesirable phenomenon known as engine knock. Hence, correct predictions of LTHR are of utmost importance to improve the understanding of knock and enable techniques aimed at controlling it. While LTHR is typically obscured by the deflagration following the spark ignition, extremely late ignition timings can lead to LTHR occurrence prior to the spark, i.e., pre-spark heat release (PSHR). In this research, PSHR in a boosted direct-injection SI engine was numerically investigated using three-dimensional computational fluid dynamics (CFD). A hybrid approach was used, based on the G-equation model for representing the turbulent flame front and the multi-zone well-stirred reactor model for tracking the chemical reactions within the unburnt region.
Technical Paper

Thermographic Measurements of Volatile Particulate Matter

2015-09-01
2015-01-1992
Semi-volatile species in the exhaust can condense on the primary particulate matter (PM) forming significant secondary PM mass downstream1. We developed a new thermographic technique to measure the volatility of a particle population. The instrument is called vapor-particle separator (VPS)2. A two-parameter model was used to interpret the thermographic data3. These two parameters define volatilization potential and thermodynamic capacity of the particles. The volatization potential delineates the unique particle volatility, while the thermodynamic capacity illustrates the work required to eliminate the particles. The thermodynamic capacity is found much smaller for small particles than that for large particles.
Technical Paper

Thermal Storage System for Electric Vehicle Cabin Heating - Component and System Analysis

2016-04-05
2016-01-0244
Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs).
Technical Paper

The Use of Fuel Chemistry and Property Variations to Evaluate the Robustness of Variable Compression Ratio as a Control Method for Gasoline HCCI

2007-04-16
2007-01-0224
On a gasoline engine platform, homogeneous charge compression ignition (HCCI) holds the promise of improved fuel economy and greatly reduced engine-out NOx emissions, without an increase in particulate matter emissions. In this investigation, a variable compression ratio (CR) engine equipped with a throttle and intake air heating was used to test the robustness of these control parameters to accommodate a series of fuels blended from reference gasoline, straight run refinery naphtha, and ethanol. Higher compression ratios allowed for operation with higher octane fuels, but operation could not be achieved with the reference gasoline, even at the highest compression ratio. Compression ratio and intake heat could be used separately or together to modulate combustion. A lambda of 2 provided optimum fuel efficiency, even though some throttling was necessary to achieve this condition. Ethanol did not appear to assist combustion, although only two ethanol-containing fuels were evaluated.
Technical Paper

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis

2007-10-29
2007-01-4059
In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may alter other specifications. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal Component Analysis (PCA) is used as an adjunct to regression analysis in this work, because of its ability to deal with co-linear variables and potential to uncover ‘hidden’ relationships between the variables.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine

2007-10-29
2007-01-4076
The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 90. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant Φ conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling the HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50.
Journal Article

The Effect of Spark-Plug Heat Dispersal Range and Exhaust Valve Opening Timing on Cold-Start Emissions and Cycle-to-Cycle Variability

2021-09-21
2021-01-1180
The partnership for advancing combustion engines (PACE) is a US Department of Energy consortium involving multiple national laboratories and includes a goal of addressing key efficiency and emission barriers in light-duty engines fueled with a market-representative E10 gasoline. A major pillar of the initiative is the generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster light-off of the three-way catalyst and engine out emissions during that period.
Journal Article

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

2014-04-01
2014-01-1562
We present simulated fuel economy and emissions of city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but tailpipe (post-aftertreatment) emissions are affected by complex interactions between engine load and the transient catalyst temperatures, and the emissions results were found to depend significantly on motor size and details of each drive cycle.
Technical Paper

Resolving EGR Distribution and Mixing

2002-10-21
2002-01-2882
A minimally invasive spatially resolved capillary inlet mass spectrometer has been used to quantify EGR/air mixing in a Cummins V-8 medium-duty diesel engine. Two EGR-system hardware designs were evaluated in terms of EGR-air mixing at the intake manifold inlet and port-to-port EGR charge uniformity. Performance was assessed at four modalized-FTP engine conditions. One design is found to be considerably better, particularly at three of the four engine conditions. Specific questions such as the effect of maximizing mass air flow on EGR mixing, and if particular cylinders are EGR starved are investigated. The detailed performance characteristics suggest areas to focus improvement efforts, and serve as a foundation for identifying the non-uniformity EGR barriers and origins.
Technical Paper

Real-Time Dynamic Brake Assessment for Heavy Commercial Vehicle Safety

2020-10-05
2020-01-1646
This paper summarizes initial results and findings of a model developed to determine the braking performance of commercial motor vehicles in motion regardless of brake type or gross weight. Real-world data collected by Oak Ridge National Laboratory for a U.S. Department of Energy study was used to validate the model. Expanding on previous proof-of-concept research showing the linear relationship of brake application pressure and deceleration additional parameters such as elevation were added to the model. Outputs from the model consist of coefficients calculated for every constant pressure braking event from a vehicle that can be used to calculate a deceleration and thus compute a stopping distance for a given scenario. Using brake application pressure profiles derived from the dataset, stopping distances for light and heavy loads of the same vehicle were compared for various speed and road grades.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
Technical Paper

Power Electronics and Electric Machinery Innovations - U.S. GovernmentS Role in Pngv

2000-11-01
2000-01-C063
The U.S. Government plays an important role in the Partnership for a New Generation of Vehicles' (PNGV) electrical and electronics technologies with a program consisting of high-risk research and development (R&D) projects. The Department of Energy (DOE) plays the largest role in supporting these technologies to specifically address automotive needs. DOE has three Automotive Integrated Power Module (AIPM) contractors and two Automotive Electric Motor Drive (AEMD) contractors working to become viable suppliers for PNGV. Materials development projects are working to improve materials and devices needed in automotive motors and drives, such as permanent magnets, capacitors, sensors, connectors, and thermal management materials. Advancements in inverters, controls, and motors and generators conducted at DOE's national laboratories are also presented.
Technical Paper

Potential Impacts of High-Octane Fuel Introduction in a Naturally Aspirated, Port Fuel-Injected Legacy Vehicle

2020-11-20
2020-01-5117
In recent years there has been an increased interest in raising the octane level of gasoline to enable higher compression ratios (CR) in spark-ignition engines to improve vehicle fuel efficiency. A number of studies have examined opportunities to increase efficiency in future vehicles, but potential impacts on the legacy fleet have not received as much attention. This effort focused on experimental studies on an engine using high-octane fuels without changing the engine’s CR. Spark timing was advanced until maximum torque was reached or knock was encountered for each engine condition, using each individual fuel to maximize engine efficiency. Knock-limited conditions occurred as the output brake mean effective pressure (BMEP) neared the maximum attainable output at a given engine speed. Increasing research octane numbers generally enabled knock-free operation under a greater number of operating conditions.
Journal Article

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

2012-04-16
2012-01-0380
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that produces low NO and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom-machined pistons designed for RCCI operation.
Technical Paper

Performance of a Printed Bimetallic (Stainless Steel and Bronze) Engine Head Operating under Stoichiometric and Lean Spark Ignited (SI) Combustion of Natural Gas

2020-04-14
2020-01-0770
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Technical Paper

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine

2009-11-02
2009-01-2645
The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC).
Journal Article

Performance Comparison of LPG and Gasoline in an Engine Configured for EGR-Loop Catalytic Reforming

2021-09-21
2021-01-1158
In prior work, the EGR loop catalytic reforming strategy developed by ORNL has been shown to provide a relative brake engine efficiency increase of more than 6% by minimizing the thermodynamic expense of the reforming processes, and in some cases achieving thermochemical recuperation (TCR), a form of waste heat recovery where waste heat is converted to usable chemical energy. In doing so, the EGR dilution limit was extended beyond 35% under stoichiometric conditions. In this investigation, a Microlith®-based metal-supported reforming catalyst (developed by Precision Combustion, Inc. (PCI)) was used to reform the parent fuel in a thermodynamically efficient manner into products rich in H2 and CO. We were able to expand the speed and load ranges relative to previous investigations: from 1,500 to 2,500 rpm, and from 2 to 14 bar break mean effective pressure (BMEP).
X