Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Variability Analysis of FMVSS-121 Air Brake Systems: 60-mi/hr Service Brake System Performance Data for Truck Tractors

2020-10-05
2020-01-1640
In support of the Federal Motor Carrier Safety Administration’s (FMCSA’s) ongoing interest in connected and automated commercial vehicles, this report summarizes analyses conducted to quantify variability in stopping distance tests conducted on commercial truck tractors. The data used were retrieved from tests performed under the controlled conditions specified for FMVSS-121 air brake system compliance testing. The report explores factors affecting the variability of the service brake stopping distance as defined by 49 CFR 571.121, S5.3.1 Stopping Distance—trucks and buses stopping distance. Variables examined in this analysis include brake type, weight, wheelbase, and tractor antilock braking system (ABS). This analysis uses existing test data collected between 2010 and 2019. Several of the examined parameters affected both tractor stopping distance and stopping distance variability.
Technical Paper

Time-Resolved Laser-Induced Incandescence Measurements of Particulate Emissions During Enrichment for Diesel Lean NOx Trap Regeneration

2005-04-11
2005-01-0186
Laser-induced incandescence is used to measure time-resolved diesel particulate emissions for two lean NOx trap regeneration strategies that utilize intake throttling and in-cylinder fuel enrichment. The results show that when the main injection event is increased in duration and delayed 13 crank-angle degrees, particulate emissions are very high. For a repetitive pattern of 3 seconds of rich regeneration followed by 27 seconds of NOx-trap loading, we find a monotonic increase in particulate emissions during the loading intervals that approaches twice the initial baseline particulate level after 1000 seconds. In contrast, particulate emissions during the regeneration intervals are constant throughout the test sequence.
Technical Paper

The Use of Small Engines as Surrogates for Research in Aftertreatment, Combustion, and Fuels

2006-11-13
2006-32-0035
In this research, small, single cylinder engines have been used to simulate larger engines in the areas of aftertreatment, combustion, and fuel formulation effects. The use of small engines reduces overall research cost and allows more rapid experiments to be run. Because component costs are lower, it is also possible to investigate more variations and to sacrifice components for materials characterization and for subsequent experiments. Using small engines in this way is very successful in some cases. In other cases, limitations of the engines influence the results and need to be accounted for in the experimental design and data analysis. Some of the results achieved or limitations found may be of interest to the small engine market, and this paper is offered as a summary of the authors' research in these areas. Research is being conducted in two areas. First, small engines are being used to study the rapid aging and poisoning of exhaust aftertreatment catalysts.
Technical Paper

The Prediction of Fatigue Sensitivity to Void Content for 3D Reinforced Composites

2006-04-03
2006-01-1336
Three dimensional fabrics have seen increasing use lately as composite reinforcements. Advantages over prepreg or chopped fiber processes can include cost, handling, consistent quality, impact behavior, and resistance to delamination [1]. To gain acceptance in the transportation industry it is imperative that properties including dynamic and fatigue behavior be designable. A Progressive Failure Analysis (PFA) was developed jointly by Alpha Star Corp and NASA to predict fatigue life of composites and determine their damage mechanisms so that the life could be extended. The title of this software package is GENOA™, and it was used to focus on the three dimensional fabric called 3WEAVE™ made by 3TEX, Inc. It was discovered through fatigue testing that void content greatly affected fatigue life for the 3D E-glass fabric reinforcing a polyurethane modified vinyl ester resin called Dion 9800 from Reichhold. This is a common characteristic for most structural materials.
Journal Article

The Effect of Spark-Plug Heat Dispersal Range and Exhaust Valve Opening Timing on Cold-Start Emissions and Cycle-to-Cycle Variability

2021-09-21
2021-01-1180
The partnership for advancing combustion engines (PACE) is a US Department of Energy consortium involving multiple national laboratories and includes a goal of addressing key efficiency and emission barriers in light-duty engines fueled with a market-representative E10 gasoline. A major pillar of the initiative is the generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster light-off of the three-way catalyst and engine out emissions during that period.
Technical Paper

Test Methodologies for Determining Energy Absorbing Mechanisms of Automotive Composite Material Systems

2000-04-02
2000-01-1575
Composite materials have the potential to reduce the overall cost and weight of automotive structures with the added benefit of being able to dissipate large amounts of impact energy by progressive crushing. To identify and quantify the energy absorbing mechanisms in composite materials, test methodologies were developed for conducting progressive crush tests on composite specimens that have simplified test geometries. The test method development focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. A new test fixture was designed to progressively crush composite plate specimens under quasi-static test conditions. Preliminary results are presented under a sufficient set of test conditions to validate the operation of the test fixture.
Technical Paper

Synergies of PCCI-Type Combustion and Lean NOx Trap Catalysis for Diesel Engines

2008-10-06
2008-01-2493
It is widely recognized that future NOx and particulate matter (PM) emission targets for diesel engines cannot be met solely via advanced combustion over the full engine drive cycle. Therefore some combination of advanced combustion and aftertreatment technologies will be required. In this study, advanced combustion modes operating with a diesel particulate filter (DPF) and a lean NOx trap (LNT) catalyst were evaluated on a 1.7 liter 4-cylinder diesel engine. The combustion approaches included baseline engine operation with and without exhaust gas recirculation (EGR) and one PCCI-type (premixed charge combustion ignition) combustion mode to enable high efficiency clean combustion (HECC). Five steady-state operating conditions were evaluated. At the low load setting the exhaust temperature was too low to enable LNT regeneration and oxidation; however, HECC (low NOx) was achievable.
Technical Paper

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine

2008-10-06
2008-01-2501
This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NOx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NOx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NOx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%).
Technical Paper

Simulation of Catalytic Oxidation and Selective Catalytic NOx Reduction in Lean-Exhaust Hybrid Vehicles

2012-04-16
2012-01-1304
We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel-powered hybrid and plug-in hybrid vehicles (HEVs and PHEVs). The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of commercially available Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust.
Journal Article

Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

2013-04-08
2013-01-1033
We compare the simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional heavy duty (HD) truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential benefit for HD hybrid vehicles during highway driving.
Technical Paper

Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst in Lean Gasoline Engine Exhaust

2015-04-14
2015-01-1008
Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
Technical Paper

Selective Catalytic Reduction of NOx Emissions from a 5.9 Liter Diesel Engine Using Ethanol as a Reductant

2003-10-27
2003-01-3244
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
Technical Paper

SI Engine Trends: A Historical Analysis with Future Projections

2015-04-14
2015-01-0972
It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number.
Technical Paper

Residual Stress Distribution in a Hydroformed Advanced High Strength Steel Component: Neutron Diffraction Measurements and Finite Element Simulations

2018-04-03
2018-01-0803
Today’s automotive industry is witnessing increasing applications of advanced high strength steels (AHSS) combined with innovative manufacturing techniques to satisfy fuel economy requirements of stringent environmental regulations. The integration of AHSS in novel automotive structure design has introduced huge advantages in mass reduction while maintaining their structural performances, yet several concerns have been raised for this relatively new family of steels. One of those concerns is their potentially high springback after forming, which can lead to geometrical deviation of the final product from its designed geometry and cause difficulties during assembly. From the perspective of accurate prediction, control and compensation of springback, further understanding on the effect of residual stress in AHSS parts is urged. In this work, the residual stress distribution in a 980GEN3 steel part after hydroforming is investigated via experimental and numerical approaches.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Technical Paper

Real-Time Engine and Aftertreatment System Control Using Fast Response Particulate Filter Sensors

2016-04-05
2016-01-0918
Radio frequency (RF)-based sensors provide a direct measure of the particulate filter loading state. In contrast to particulate matter (PM) sensors, which monitor the concentration of PM in the exhaust gas stream for on-board diagnostics purposes, RF sensors have historically been applied to monitor and control the particulate filter regeneration process. This work developed an RF-based particulate filter control system utilizing both conventional and fast response RF sensors, and evaluated the feasibility of applying fast-response RF sensors to provide a real-time measurement of engine-out PM emissions. Testing with a light-duty diesel engine equipped with fast response RF sensors investigated the potential to utilize the particulate filter itself as an engine-out soot sensor.
Technical Paper

Rapid In Situ Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy

2007-10-29
2007-01-4108
A technique for rapid in situ measurement of the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background oil fluorescence; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the engine oil system. A low cost 532-nm laser diode was used for excitation.
Technical Paper

Rapid Aging of Diesel Lean NOx Traps by High-Temperature Thermal Cycling

2007-04-16
2007-01-0470
In the present study, a bench-flow reactor is used to perform lean/rich thermal cycling on model “Ba+K” LNT catalysts at temperatures of 700, 800, 900 and 1000°C using simulated diesel exhaust gases. Deterioration of NOx performance is measured and the deactivation mechanisms of thermally-aged “Ba+K” LNTs are identified using characterization techniques such as TEM, XRD and EPMA. Results indicate that the deterioration is minimal at 700 and 800°C, however, at aging temperatures exceeding 800°C the severity of thermal aging depends on aging temperature as well as number of aging cycles.
Technical Paper

Product Selectivity During Regeneration of Lean NOx Trap Catalysts

2006-10-16
2006-01-3441
NOx reduction product speciation during regeneration of a fully formulated lean NOx trap catalyst has been investigated using a bench-scale flow reactor. NH3 and N2O were both observed during the regeneration phase of fast lean/rich cycles that simulated engine operation. Formation of both products increased with higher reductant concentrations and lower temperatures. Steady flow experiments were used to decouple the regeneration reactions from the NOx storage and release processes. This approach enabled a detailed investigation into the reactions that cause both formation and destruction of non-N2 reduction products. Pseudo-steady state experiments with simultaneous flow of NOx and reductant indicated that high concentrations of CO or H2 drive the reduction reactions toward NH3 formation, while mixtures that are stoichiometric for N2 formation favor N2. These experiments also showed that NH3 is readily oxidized by both NO and O2 over the LNT catalyst.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
X