Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of HCCI Ignition Characteristics of Gasoline Fuels Using a Single-Zone Kinetic Model with a Five Component Surrogate Fuel

2008-10-06
2008-01-2399
While gasoline surrogate development has progressed in the areas of more complex surrogate mixtures and in kinetic modeling tools and mechanism development, it is generally recognized that further development is still needed. This paper represents a small step in supporting this development by providing comparisons between experimental engine data and surrogate-based kinetic models. In our case, the HCCI engine data comes from a port-injected, single-cylinder research engine with intake-air heating for combustion phasing control. Timing sweeps were run at constant fuel rate for three market gasolines and five surrogate mixtures. Modeling was done using the CHEMKIN software with a gasoline mechanism set containing 1440 species and 6572 reactions. Five pure compounds were selected for the surrogate blends and include iso-octane, n-heptane, toluene, methylcyclohexane, and 1-hexene.
Technical Paper

A Computer Model Based Sensitivity Analysis of Parameters of an Automotive Air Conditioning System

2004-03-08
2004-01-1564
The objective of this work is to perform a computer model based sensitivity analysis of parameters of an automotive air conditioning system to identify the critical parameters. Design of Experiment (DOE) and Analysis of Variance (ANOVA) techniques have been used to identify the critical parameters and their relative effects on the air conditioning system performance. The sensitivity analysis has been verified by running similar tests on an air conditioning system test stand (AC Test Stand).
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Feasibility Evaluation of a Thermal Plasma Fuel Reformer for Supplemental Hydrogen Addition to Internal Combustion Engines

1999-04-26
1999-01-2239
One scenario for reducing engine out NOx in a spark ignition engine is to introduce small amounts of supplemental hydrogen to the combustion process. The supplemental hydrogen enables a gasoline engine to run lean where NOx emissions are significantly reduced and engine efficiency is increased relative to stoichiometric operation. This paper reports on a mass and energy balance model that has been developed to evaluate the overall system efficiencies of a thermal reformer-heat exchanger system capable of delivering hydrogen to the air intake of a gasoline engine. The mass and energy balance model is utilized to evaluate the conditions where energy losses associated with fuel reformation may be offset by increases in engine efficiencies.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A Minimum-Effort Motion Algorithm for Digital Human Models

2003-06-17
2003-01-2228
A new realistic motion control algorithm for digital human models is presented in this paper based on the principle of effort minimization. The proposed algorithm is developed through an innovative mathematical model to make the applications more flexible and more global, especially for the visualization of human motions in automotive assembly operations. The central idea of this unique model is to interpret the solution of the homogeneous Lagrange equation for a mannequin as the origin of dynamic motion. Furthermore, a digital human possesses about 42 joints over the main body except the head, fingers and toes, and offers a large room of kinematic redundancy. We have found 14 new 3-D independent motion markers assigned over the human body to constitute a Cartesian coordinate system, under which a minimum-effort based dynamic control scheme is developed using a state-feedback linearization procedure.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

A Systems Approach to Life Cycle Truck Cost Estimation

2006-10-31
2006-01-3562
A systems-level modeling framework developed to estimate the life cycle cost of medium- and heavy-duty trucks is discussed in this paper. Costs are estimated at a resolution of five major subsystems and 30+ subsystems, each representing a specific manufacturing technology. Interrelationships among various subsystems affecting cost are accounted for. Results of a specific Class 8 truck are finally discussed to demonstrate the modeling framework's capability, including the analysis of cost-effectiveness of some of the competing alternative system design options being considered by the industry today.
Technical Paper

Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation

2020-04-14
2020-01-0293
This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1.
Technical Paper

Advanced Finite-Volume Numerics and Source Term Assumptions for Kernel and G-Equation Modelling of Propane/Air Flames

2022-03-29
2022-01-0406
G-Equation models represent propagating flame fronts with an implicit two-dimensional surface representation (level-set). Level-set methods are fast, as transport source terms for the implicit surface can be solved with finite-volume operators on the finite-volume domain, without having to build the actual surface. However, they include approximations whose practical effects are not properly understood. In this study, we improved the numerics of the FRESCO CFD code’s G-Equation solver and developed a new method to simulate kernel growth using signed distance functions and the analytical sphere-mesh overlap. We analyzed their role for simulating propane/air flames, using three well-established constant-volume configurations: a one-dimensional, freely propagating laminar flame; a disc-shaped, constant-volume swirl combustor; and torch-jet flame development through an orifice from a two-chamber device.
Journal Article

Advanced Intra-Cycle Detection of Pre-Ignition Events through Phase-Space Transforms of Cylinder Pressure Data

2020-09-15
2020-01-2046
The widespread adoption of boosted, downsized SI engines has brought pre-ignition phenomena into greater focus, as the knock events resulting from pre-ignitions can cause significant hardware damage. Much attention has been given to understanding the causes of pre-ignition and identify lubricant or fuel properties and engine design and calibration considerations that impact its frequency. This helps to shift the pre-ignition limit to higher specific loads and allow further downsizing but does not fundamentally eliminate the problem. Real-time detection and mitigation of pre-ignition would thus be desirable to allow safe engine operation in pre-ignition-prone conditions. This study focuses on advancing the time of detection of pre-ignition in an engine cycle where it occurs.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

An Efficient Procedure for Vehicle Thermal Protection Development

2005-04-11
2005-01-1904
Vehicle thermal protection is an important aspect of the overall vehicle development process. It involves optimizing the exhaust system routing and designing heat shields to protect various components that are in near proximity to the exhaust system. Reduced time to market necessitates an efficient process for thermal protection development. A robust procedure that utilizes state of the art CFD simulation techniques proactively during the design phase is described. Simulation allows for early detection of thermal issues and development of countermeasures several months before prototype vehicles are built. Physical testing is only used to verify the thermal protection package rather than to develop heat shields. The new procedure reduces the number of physical tests and results in a robust, efficient methodology.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Journal Article

Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control

2013-04-08
2013-01-0270
Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability - including significant numbers of misfires - that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Application of High Performance Computing for Simulating Cycle-to-Cycle Variation in Dual-Fuel Combustion Engines

2016-04-05
2016-01-0798
Interest in operational cost reduction is driving engine manufacturers to consider low-cost fuel substitution in heavy-duty diesel engines. These dual-fuel (DF) engines could be operated either in diesel-only mode or operated with premixed natural gas (NG) ignited by a pilot flame of compression-ignited direct-injected diesel fuel. Under certain conditions, dual-fuel operation can result in increased cycle-to-cycle variability (CCV) during combustion. CFD can greatly help in understanding and identifying critical parameters influencing CCV. Innovative modelling techniques and large computing resources are needed to investigate the factors affecting CCV in dual-fuel engines. This paper discusses the use of the High Performance Computing resource Titan, at Oak Ridge National Laboratory, to investigate CCV of a dual-fuel engine.
X