Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Shearography for Rapid Nondestructive Evaluation of Bonded Composite Structures

1999-03-01
1999-01-0947
Shearography is an optical technique developed for full-field measurement of surface deformation. It has since been accepted by industry as a practical nondestructive testing technique for evaluating the structural integrity of components and structures. Qualitatively, shearography reveals flaws from flaw-induced, anomalous deformation in the component under inspection, and quantitatively, shearography assesses the detected flaws through back-calculation from the anomalous deformation. This paper demonstrates that, with the use of multiple-frequency acoustical excitation together with the time-integrated shearographic recording technique, rapid and automated assessment of the integrity of adhesive-bonded composite structures can be realized in the actual plant environment.
Technical Paper

Road Noise Modelling Using Statistical Energy Analysis Method

1995-05-01
951327
A mathematical model was developed to evaluate design options for control of road noise transmission into the interior of a passenger car. Both air-borne and structure-borne road noise over the frequency range of 200-5000 Hz was able to be considered using the Statistical Energy Analysis (SEA) method. Acoustic and vibration measurements conducted on a laboratory rolling road were used to represent the tire noise “source” functions. The SEA model was correlated to in car sound pressure level measurements to within 2-4 db accuracy, and showed that airborne noise dominated structure-borne noise sources above 400 Hz. The effectiveness of different noise control treatments was simulated and in some cases evaluated with tests.
Technical Paper

Refinement of the Interior Sound Quality of Chrysler's Dodge and Plymouth

1995-05-01
951309
The low noise and linear sound level characteristics of passenger vehicles are receiving increased scrutiny from automotive journalists. A linear noise level rise with increasing engine rpm is the first basic aspect of insuring an acceptable vehicle interior engine noise sound quality. In a typical case of structural response to engine vibration input, interior noise begins to rise with rpm, remains constant or even drops as the engine continues to accelerate, and then exhibits a noise period corresponding to the structure's natural frequency. Frequently this nonlinearity is bothersome to the customer. During the development process, Chrysler's Dodge and Plymouth Neon exhibited just such a nonlinear rise in noise level, heard within the passenger compartment, when the vehicle was accelerated through 4200 rpm.
Technical Paper

Panel Contribution Study: Results, Correlation and Optimal Bead Pattern for Powertrain Noise Reduction

1997-05-20
971953
To understand how the passenger compartment cavity interacts with the surrounding panels (roof, windshield, dash panel, etc) a numerical panel contribution analysis was performed using FEA and BEA techniques. An experimental panel contribution analysis was conducted by Reiter Automotive Systems. Test results showed good correlation with the simulation results. After gaining some insight into panel contributions for power train noise, an attempt was made to introduce beads in panels to reduce vibration levels. A fully trimmed body structural-acoustic FEA model was used in this analysis. A network of massless beam elements was created in the model. This full structural-acoustic FEA model was then used to determine the optimal location for the beads, using the added beams as optimization variables.
Technical Paper

PRINCIPLES OF NOISE REDUCTION

1958-01-01
580052
THIS paper explains a few of the basic principles of the character of sound and the mechanism of human hearing. The author describes some simple experiments which demonstrate the relationship between intensity and loudness and the nature of harmony. He also points out the difficulties of accurately analyzing sound electronically, and the resulting importance of combining the finest electronic equipment with sharp, attentive human faculties. Five basic ways to reduce noise and the mechanics of each are described. The effect of these methods on the work of the sound engineer is indicated.
Journal Article

Optimizing Body Panels for NVH Performance

2015-06-15
2015-01-2265
Automotive manufacturers are being challenged to come up with radical solutions to achieve substantial (30-35%) vehicle weight reductions without compromising Safety, Durability, Handling, Aero-thermal or Noise, Vibration and Harshness (NVH) performance. Developing light weight vehicle enablers have assumed foremost priority amongst vehicle engineering teams in order to address the stringent Fuel Economy Performance (FEP) targets while facilitating lower CO2 emissions, downsizing of engines, lower battery capacities etc. Body sheet metal panels have become prime targets for weight reductions via gage reduction, high strength steel replacement, lighter material applications, lightening holes etc. Many of these panel weight reduction solutions are in sharp conflict with NVH performance requirements.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

High Speed Digital Holography: Equivalence of Full-Field Accelerometer for Vibration Measurement

1996-02-01
960715
This paper presents a novel technique allowing time-dependent displacement of an object to be studied by continuously digitizing the speckle images using a high speed image acquisition system. Instead of generating fringe patterns, the displacement versus time for any point of interest can be studied. Therefore, the technique is equivalent to “many” massless and noncontact displacement sensors, which is particularly useful for vibration measurement.
Technical Paper

CHRYSLER TORSION-AIRE SUSPENSION Across The Board

1958-01-01
580031
IN 1951 Chrysler Corp. began working on a new torsion suspension. In this paper the authors describe details of the development and design of the suspension, now available on 1957 cars. The authors claim the Torsion-Aire suspension has the following advantages: reduced highspeed float, boulevard harshness, impact harshness, road noise, body roll, nose dive, and acceleration squat; better directional stability and cornering ability; fewer lubrication points; and a better balanced ride. The main feature of the front suspension is the use of torsion bars. One of the principal advantages of torsion bars is their weight: 10 lb as compared to 15.8 lb for a 1956 production coil spring.
Technical Paper

Assessing Design Concepts for NVH Using HYFEX (Hybrid Finite Element/Experimental) Modeling

1995-05-01
951249
This paper outlines several methodologies which use finite element and experimental models to predict vehicle NVH responses. Trimmed body experimental modal subsystem models are incorporated into the finite element system model to evaluate engine mounting systems for low frequency vibration problems. Higher frequency noise issues related to road input are evaluated using experimentally derived acoustic transfer functions combined with finite element subsystem model responses. Specific examples of system models built to simulate idle shake and road noise are given. Applications to engine mounting, suspension design, and body structure criteria are discussed.
Technical Paper

Analyzing Vibrations in an IC Engine Valve Train

1998-02-23
980570
This study analyzes the vibration characteristics of the valve train of a 2.0L SOHC Chrysler Corp. Neon engine over a range of operating speeds to investigate and demonstrate the advantages and limitations of various dynamic measurements such as displacement, velocity, and acceleration in this application. The valve train was tested in a motoring fixture at speeds of 500 to 3500 camshaft rpm. The advantages of analyzing both time and frequency domain measurements are described. Both frequency and order analysis were done on the data. The theoretical order spectra of cam displacement and acceleration were computed and compared to the experimental data. Deconvolution was used to uncover characteristic frequencies of vibration in the system. The theoretical cam acceleration spectrum was deconvolved from measured acceleration spectra to reveal the frequency response function of the follower system.
Technical Paper

An Objective Method of Estimating Car Interior Aerodynamic Noise

1977-02-01
770393
A method of breaking down car interior noise measurements into aerodynamic noise, residual noise and aspiration noise is presented. Correlation between car interior aerodynamic noise extracted from “on the road” measurements and car interior aerodynamic noise measured in a wind tunnel indicate the validity of the method. Limitations of the method in both frequency and car airspeed are identified.
Technical Paper

A Progress Report on Electromagnetic Activity of Motor Vehicle Manufacturer's Association

1973-02-01
730057
Starting in 1965 and continuing through 1972, the Radio Committee of the Motor Vehicles Manufacturers Association (MVMA) has been the coordinator of a number of electromagnetic research projects. These investigations have included extensive applications of the updated SAE Standard, Measurement of Electromagnetic Radiation From Motor Vehicles (20-1000 MHz)-SAE J551a. Furthermore, there were joint testing programs with the Electronic Industries Association which encompassed measuring degradation in the performance of Land Mobile Radio Service receivers resulting from varying levels of impulsive-type radiation from motor vehicles. In addition, efforts were expended in using statistical approaches for testing a number of hypotheses covering a conversion of impulsive vehicle noise data to the interference potential to Land Mobile receivers.
X