Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Technical Paper

Virtual Testing of Front Camera Module

2023-04-11
2023-01-0823
The front camera module is a fundamental component of a modern vehicle’s active safety architecture. The module supports many active safety features. Perception of the road environment, requests for driver notification or alert, and requests for vehicle actuation are among the camera software’s key functions. This paper presents a novel method of testing these functions virtually. First, the front camera module software is compiled and packaged in a Docker container capable of running on a standard Linux computer as a software in the loop (SiL). This container is then integrated with the active safety simulation tool that represents the vehicle plant model and allows modeling of test scenarios. Then the following simulation components form a closed loop: First, the active safety simulation tool generates a video data stream (VDS). Using an internet protocol, the tool sends the VDS to the camera SiL and other vehicle channels.
Journal Article

Virtual Switches and Indicators in Automotive Displays

2020-04-14
2020-01-1362
This paper presents recent advances in automotive microprocessor, operating system, and supporting software technology that supports regulatory and/or functional safety graphics within vehicle cockpit displays. These graphics include “virtual switches” that replace physical switches in the vehicle, as well as “virtual indicators” that replace physical indicator lights. We discuss the functional safety design process and impacts to software and hardware architecture as well as the software design methods to implement End-To-End [E2E] network protection between different ECUs and software processes. We also describe hardware monitoring requirements within the display panel, backlighting, and touch screen and examine an example system design to illustrate the concepts.
Technical Paper

Tribological and Metallurgical Properties of Nitrided AISI 4340 Steel

2014-04-01
2014-01-0959
Nitridng usually improves wear resistance and can be accomplished using a gas or plasma method; it's necessary to find if there is any difference in surface roughness, wear and/or wear mechanism when choosing between methods for nitriding. In this study, Ball-on-disk wear test was compared on coupons nitrided with five different nitriding cycles that processed at temperatures of 500-570°C, with a processing time of 8 - 80 hrs. Different compound layer thicknesses were formed, (5-8μm), and a minimum of 0.38 mm case depth was produced. Nitrided samples were also compared to nitrocarburized and the nitrided coupons with a “0” compound layer in a ball-on-disk test. Few selected coupons were post-polished and wear test on ball-on-disk test was compared with the coupons without post polishing. Optical surface roughness using White Light Interferometry (WLIM) and metallurgical testing was performed.
Technical Paper

Transverse Vibration of a Composite Shaft

2009-05-19
2009-01-2066
The advantages of having higher stiffness to weight ratio and strength to weigh ratio that composite materials have resulted in an increased interest in them. In automotive engineering, the weight savings has positive impacts on other attributes like fuel economy and possible noise, vibration and harshness (NVH). The driveline of an automotive system can be a target for possible use of composite materials. The design of the driveshaft of an automotive system is primarily driven by its natural frequency. This paper presents an exact solution for the vibration of a composite driveshaft with intermediate joints. The joint is modeled as a frictionless internal hinge. The Euler-Bernoulli beam theory is used. Lumped masses are placed on each side of the joint to represent the joint mass. Equations of motion are developed using the appropriate boundary conditions and then solved exactly.
Technical Paper

Tracking Panel Movement during Stamping Process Using Advanced Optical Technology

2020-04-14
2020-01-0541
Metal panels are comprehensively applied in the automotive industry. A significant issue with metal panels is the deflection when moving in the press line of the stamping process. Unpredictable deflection could result in the cut off of the press line. To control the deflection in a safe zone, finite element tools are used to simulate the panel transform process. However, the simulation requires experimental validation where conventional displacement measurement techniques could not satisfy the requirement of vast filed displacement and accuracy point tracking. In this study, multi-camera digital image correlation (DIC) systems have been developed to track the movement of panels during the press line of the stamping process. There are some advantages of applying the DIC system, including non-contact, full-field, high accuracy, and direct measurement techniques that provide the evaluation displacement of the metal panel and press line.
Technical Paper

Tooling Effects on Edge Stretchability of AHSS in Mechanical Punching

2019-04-02
2019-01-1086
Edge stretchability reduction induced by mechanical trimming is a critical issue in advanced high strength steel applications. In this study, the tooling effects on the trimmed edge damage were evaluated by the specially designed in-plane hole expansion test with the consideration of three punch geometries (flat, conical, and rooftop), three cutting clearances (6%, 14%, and 20%) and two materials grades (DP980 and DP1180). Two distinct fracture initiation modes were identified with different testing configurations, and the occurrence of each fracture mode depends on the tooling configurations and materials grades. Digital Image Correlations (DIC) measurements indicate the materials are subject to different deformation modes and the various stress conditions, which result in different fracture initiation locations.
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

The Role of Second Phase Hard Particles on Hole Stretchability of Two AA6xxx Alloys

2017-03-28
2017-01-0307
The hole stretchability of two Aluminum Alloys (AA6111 and AA6022) are studied by using a two stages integrated finite element framework where the edge geometry and edge damages from the hole piercing processes were considered in the subsequent hole expansion processes. Experimentally it has been found that AA6022 has higher hole expansion ratios than those of AA6111. This observation has been nicely captured by finite element simulations. The main cause of differences have been identified to the volume fractions of the random distributed second phase hard particles which play a critical role in determining the fracture strains of the materials.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

The Influence of Sample Geometry on the Mechanical Properties and Failure Mechanisms of 6111 Aluminum Alloy Tensile Specimens

2024-04-09
2024-01-2280
This research focuses on the commercial 6111 aluminum alloy as the subject of investigation. By designing tensile specimens with the same characteristic dimensions but varying fillet radii, the effects of fillet radius on the tensile properties and stress concentration effects of the aluminum alloy were studied through tensile testing and digital image correlation techniques. The results demonstrate that with an increase in fillet radius, the failure strength and stress distribution of the aluminum alloy specimens have both undergone alterations. This phenomenon can be attributed to the reduction of stress concentration at the fillet due to the larger fillet radius. Further verification through digital image correlation reaffirms that samples with a fillet radius of 10mm exhibit notable stress concentration effects at the fillet, while specimens with a fillet radius increased to 40mm display uniform plastic deformation across the parallel section.
Technical Paper

The Influence of Edge Quality on Edge Stretching Limit for Aluminum Alloy

2016-04-05
2016-01-0416
This paper presents the measurement and analysis of the edge stretching limit of aluminum alloy using digital image correlation. The edge stretching limit, also known as the “edge thinning limit,” is the maximum thinning strain at a point of edge failure resulting from tension; which may be predisposed by edge quality. Edge fracture is a vital failure mode in sheet metal forming, however it is very difficult to measure. A previous study enabled the measurement of edge thinning strain by using advanced digital image correlation but it did not consider how the edge quality could affect the edge stretching limit of aluminum alloy. This paper continues to measure edge thinning strain by comparing polished to unpolished AA5754, thus determining the effect edge quality has on the edge stretching limit. To enable the measurement by optical method for a very long and thin sample, a notch is used to localize where edge failure occurs.
Technical Paper

The Digital Image Correlation Technique Applied to Hole Drilling Residual Stress Measurement

2014-04-01
2014-01-0825
The residual stresses found in components are mainly due to thermal, mechanical and metallurgical changes of material. The manufacturing processes such as fabrication, assembly, welding, rolling, heat treatment, shot peening etc. generate residual stresses in material. The influence of residual stress can be beneficial or detrimental depending on nature and distribution of the residual stress in material. In general, the compressive residual stress can increase the fatigue life of material because it provides greater resistance for crack initiation and propagation. A significant number of improvements for residual stress measurement techniques have occurred in last few decades. The most popular technique of residual stress measurement is based on the principle of strain gage rosette and hole drilling (ASTM E837-01, destructive).
Technical Paper

Test of Inclined Double Beads on Aluminum Sheets

2018-04-03
2018-01-1221
Draw beads are widely used in the binder of a draw die for regulating the restraining force and control the draw-in of a metal blank. Different sheet materials and local panel geometry request different local draw bead configurations. Even the majority of draw bead is single draw bead, the alternative double draw bead does have its advantages, such as less bending damage may be brought to the sheet material and more bead geometry features available to work on. In this paper, to measure the pulling force when a piece of sheet metal passing through a draw bead on an inclined binder, the AA5XXX and AA6XXX materials were tested and its strain were measured with a digital image correlation (DIC) system. Five different types of double bead configurations were tested. The beads are installed in a Stretch-Bend-Draw-System (SBDS) test device. The clearance between a male and a female bead is 10% thicker than the sheet material. A tensile machine was used to record the pulling force.
Technical Paper

Tensile Material Properties of Fabrics for Vehicle Interiors from Digital Image Correlation

2013-04-08
2013-01-1422
Fabric materials have diverse applications in the automotive industry which include upholstery, carpeting, safety devices, and interior trim components. The textile industry has invested substantial effort toward development of standard testing techniques for characterizing mechanical properties of different fabric types (e.g. woven and knitted). However, there are presently no standards for determination of Young's modulus, Poisson's ratio and tensile stress-strain properties required for the detailed modeling of fabric materials in vehicle structural simulations. This paper presents results from uniaxial tensile tests of different automotive seat cover fabric materials. Digital image correlation, a full field optical method for measuring surface deformation, was used to determine tensile properties in both the warp/wale and the weft/course directions. The fabrics were tested with and without the foam backing.
Technical Paper

System Engineering for Automated Software Update of Automotive Electronics

2018-04-03
2018-01-0750
In traditional automotive electronic design, software update has been a component oriented, manual process rather than a systematic designed in capability suitable for automation. In recent days as software content in vehicles grow, the need to update software in vehicles more frequently is becoming a necessity. Moreover, additional attributes for software updates, for example timely delivery of security related update for vehicles, desire to add features using software update, control cost of software updates, etc., requires a system engineered design rather than a component oriented approach. As the automobile domain utilizes various means of mobility (Combustion Engine, Hybrid, Battery, etc.) and various functional domains (Infotainment, Safety, Mobility, Telematics, ADAS (Advance Driving Assist service), Autonomous, etc.), to control the overall cost of future software update for such a diverse environment, it is beneficial to introduce automation in the software update process.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

Study of Incremental Bending Test on Aluminum Sheets

2018-04-03
2018-01-0807
Bendability is one of the most important formability characteristics in sheet metal forming, so it has to be understood for robust aluminum stamping process designs. Crack is one of the major failure modes in aluminum sheet bending. In this study, a new “incremental bending” method is proposed to reduce the risk of bending failure. A novel laboratory test methodology is conducted to test the 5xxx series aluminum sheet bendability with 3D digital image correlation (DIC) measurement system. The designs of test apparatus and test procedure are introduced in this paper. Through the data processing and evaluation of a sequence image acquisition, the major strain histories within the zone of the through thickness crack of test samples are measured. Testing results show that incremental bending is capable of reducing peak strain on the outer surface obviously compared with traditional non-incremental bending. The more step, more movement, the more peak strain reduction.
X