Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermal efficiency improvement in twin shaped semi- premixed diesel combustion with a combustion chamber dividing fuel sprays and optimization of fuel ignitability

2023-09-29
2023-32-0051
The authors have reported significant smoke reduction in twin shaped semi-premixed diesel combustion with a newly designed combustion chamber to distribute the first and the second sprays into upper and lower layers. However, the first stage premixed combustion tends to advance far from the TDC, resulting in lowering of thermal efficiencies. In this report, improvement of thermal efficiency by optimizing the combustion phase with lower ignitability fuels was identified with the divided combustion chamber. The experiment was conducted with four fuels with different cetane numbers. The first stage premixed combustion can be retarded to the optimum phase with the fuel with cetane number 38, establishing high efficiencies.
Technical Paper

PREMIER Combustion of Natural Gas Ignited with Diesel Fuel in a Dual Fuel Engine -Effects of EGR and Supercharging on End-gas Auto Ignition and Thermal Efficiency

2023-09-29
2023-32-0016
To control the auto ignition in end-gas region and to achieve higher thermal efficiency in a natural gas dual fuel engine operated under PREMIER combustion mode where the end-gas auto ignition occurs without knocking-like oscillation, the EGR (exhaust gas recirculation) and supercharging were applied. The EGR rate and the intake air pressure as well as the pilot injection timing of diesel fuel were varied, and the profiles of the in-cylinder pressure, the exhaust emissions and the heat balance were examined at the indicated mean effective pressure around 680 kPa. The experimental results showed that higher thermal efficiency can be achieved with the combination of the PREMIER combustion and the EGR rate of 30% due to the improvements in the combustion efficiency and the degree of constant volume heat release while reducing the cooling loss.
Journal Article

Improvements of Combustion and Emissions in a Natural Gas Fueled Engine with Hydrogen Enrichment and Optimized Injection Timings of the Diesel Fuel

2022-01-09
2022-32-0095
In a natural gas fueled engine ignited by diesel fuel, the addition of hydrogen to the engine could be a possible way to improve thermal efficiency and reduce unburned methane which has a warming potential many times that of carbon dioxide as it promotes a more rapid and complete combustion. This study carried out engine experiments using a single cylinder engine with natural gas and hydrogen delivered separately into the intake pipe, and with pilot-injection of diesel fuel. The percentages of hydrogen in the natural gas-hydrogen mixtures were varied from 0% to 50% of the heat value. The results showed that the hydrogen addition has an insignificant effect on the ignition delay of the diesel fuel and that it shortens the combustion duration. The increase in the hydrogen ratio decreased the unburned hydrocarbon emissions more than the reduction of the amount of natural gas that was replaced by the hydrogen.
X