Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Transient Turbine Engine Modeling and Real-Time System Integration Prototyping

2006-11-07
2006-01-3040
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. This paper investigates the possibility of using a hardware-in-the-loop (HIL) analysis with real time integration. A representative electrical power system is removed from a turbine engine model simulation and replaced with the appropriate hardware attached to a 350 horsepower drive stand. In order to update the model to proper operating conditions, variables are passed between the hardware and the computer model. Using this method, a significant reduction in runtime is seen, and the turbine engine model is usable in a real time environment. Scaling is also investigated for simulations to be performed that exceed the operating parameters of the drive stand.
Journal Article

Transient Engine Emulation within a Laboratory Testbed for Aircraft Power Systems

2014-09-16
2014-01-2170
This paper presents the details of an engine emulation system utilized within a Hardware-in-the-Loop (HIL) test environment for aircraft power systems. The paper focuses on the software and hardware interfaces that enable the coupling of the engine model and the generator hardware. In particular, the rotor dynamics model that provides the critical link between the modeled dynamics of the engine and the measured dynamics of the generator is described in detail. Careful consideration for the measured torque is included since the measurement contains inertial effects as well as torsional resonances. In addition, the rotor model is equipped with the ability to apply power and speed scaling between the engine and generator.
Journal Article

The Utility of Wide-Bandwidth Emulation to Evaluate Aircraft Power System Performance

2016-09-20
2016-01-1982
The cost and complexity of aircraft power systems limit the number of integrated system evaluations that can be performed in hardware. As a result, evaluations are often performed using emulators to mimic components or subsystems. As an example, aircraft generation systems are often tested using an emulator that consists of a bank of resistors that are switched to represent the power draw of one or more actuators. In this research, consideration is given to modern wide bandwidth emulators (WBEs) that use power electronics and digital controls to obtain wide bandwidth control of power, current, or voltage. Specifically, this paper first looks at how well a WBE can emulate the impedance of a load when coupled to a real-time model. Capturing the impedance of loads and sources is important for accurately assessing the small-signal stability of a system.
Journal Article

Power Quality Assessment through Stochastic Equivalent Circuit Analysis

2016-09-20
2016-01-1988
Movement toward more-electric architectures in military and commercial airborne systems has led to electrical power systems (EPSs) with complex power flow dynamics and advanced technologies specifically designed to improve power quality in the system. As such, there is a need for tools that can quickly analyze the impact of technology insertion on the system-level dynamic transient and spectral power quality and assess tradeoffs between impact on power quality versus weight and volume. Traditionally, this type of system level analysis is performed through computationally intensive time-domain simulations involving high fidelity models or left until the hardware fabrication and integration stage. In order to provide a more rapid analysis prior to hardware development and integration, stochastic equivalent circuit analysis is developed that can provide power quality assessment directly in the frequency domain.
Technical Paper

Power Quality Analysis Framework for AC and DC Electrical Systems

2014-09-16
2014-01-2209
Analyzing and maintaining power quality in an electrical power system (EPS) is essential to ensure that power generation, distribution, and loads function as expected within their designated operating regimes. Standards such as MIL-STD-704 and associated documents provide the framework for power quality metrics that need to be satisfied under varying operating conditions. However, analyzing these power quality metrics within a fully integrated EPS based solely on measurements of relevant signals is a different challenge that requires a separate framework containing rules for data acquisition, metric calculations, and applicability of metrics in certain operating conditions/modes. Many EPS employed throughout industry and government feature various alternating-current (ac) power systems.
Technical Paper

Model Validation Planning and Process on the INVENT Program

2014-09-16
2014-01-2116
Validation is a critical component of model-based design (MBD). Without it, regardless of the level of model verification, neither the accuracy nor the domain of applicability of the models is known. Thus, it is risky to base design decisions on the predictions of unvalidated models. The Integrated Vehicle Energy Technology (INVENT) program is planning a series of hardware experiments that will be used to validate a large set of unit-, subsystem-, and system-level models. Although validating such a large number of interacting models is a large task, it provides an excellent opportunity to test the limits of MBD.
Journal Article

Integrated Power and Thermal Management System (IPTMS) Demonstration Including Preliminary Results of Rapid Dynamic Loading and Load Shedding at High Power

2015-09-15
2015-01-2416
An IPTMS hardware facility has been established in the laboratories of the Aerospace Systems Directorate of the Air Force Research Laboratory (AFRL) at Wright-Paterson Air Force Base (WPAFB). This hardware capability was established to analyze the transient behavior of a high power Electrical Power System (EPS) coupled virtually to a Thermal Management System (TMS) under fast dynamic loading conditions. The system incorporates the use of dynamic electrical load, engine emulation, energy storage, and emulated thermal loads operated to investigate dynamics under step load conditions. Hardware architecture and control options for the IPTMS are discussed. This paper summarizes the IPTMS laboratory demonstration system, its capabilities, and preliminary test results.
Technical Paper

Integrated Hardware-in-the-Loop Simulation of a Complex Turbine Engine and Power System

2006-11-07
2006-01-3035
The interdependency between propulsion, power, and thermal subsystems on military aircraft such as the F-35 Joint Strike Fighter (JSF) and F-22 Raptor continues to increase as advanced war-fighting capabilities including solid-state radars, electronic attack, electric actuation, and Directed Energy Weaponry (DEW) expand to meet Air Force needs. Novel analysis and testing methodologies are required to predict these interdependencies and address adverse interactions prior to costly hardware prototyping. As a result, the Air Force Research Laboratory (AFRL) has established a dynamic hardware-in-the-loop (HIL) test-bed wherein transient simulations can be integrated through advanced real-time simulation with prototype hardware for integrated system studies and analysis. This paper details a test-bed configuration where a dynamic simulation of an aircraft turbine engine is utilized to control a dual-head electric drive stand.
Technical Paper

Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms

2008-11-11
2008-01-2909
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. Hardware-in-the-loop (HIL) is being used to investigate aircraft power systems by using a combination of hardware and simulations. This paper considers three different real-time simulators in the same HIL configuration. A representative electrical power system is removed from a turbine engine simulation and is replaced with the appropriate hardware attached to a 350 horsepower drive stand. Variables are passed between the hardware and the simulation in real-time to update model parameters and to synchronize the hardware with the model.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Enhancements to Software Tools and Progress in Model-Based Design of EOA on the INVENT Program

2014-09-16
2014-01-2118
The diverse and complex requirements of next-generation energy optimized aircraft (EOA) demand detailed transient and dynamic model-based design (MBD) to ensure the proper operation of numerous interconnected and interacting subsystems across multiple disciplines. In support of the U.S. Air Force's Integrated Vehicle Energy Technology (INVENT) program, several MBD-derived software tools, including models of EOA technologies, have been developed. To validate these models and demonstrate the performance of EOA technologies, a series of Integrated Ground Demonstration (IGD) hardware tests are planned. Several of the numerous EOA software tools and MBD-based processes have been updated and adapted to support this activity.
Technical Paper

Developing Analysis for Large Displacement Stability for Aircraft Electrical Power Systems

2014-09-16
2014-01-2115
Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
Technical Paper

Data Acquisition Uncertainty

2012-10-22
2012-01-2206
With the advent of modern parallel computing systems, larger and more accurate simulation models have been developed to simulate real-world hardware. These models require verification and validation (V&V), the latter using data acquired from representative hardware to ascertain the uncertainty of the model. An understanding of the errors introduced by the measurement system into the validation assessment allows for the model assessor to attribute errors to the measurement system as opposed to the model or experimental setup. Once the model(s) have been through the validation process, decision makers can better understand the risk associated with using these models. This paper describes one possible procedure to quantify the uncertainty of the data acquisition (DAQ) system.
Technical Paper

Business and Process Improvements in the Investment Casting Sector

1998-06-02
981855
The Engine Supplier Base Initiative (ESBI) is a joint Air Force/Industry cooperative agreement aimed at achieving affordable precision investment cast airfoil and large structural components for man-rated gas turbine engines. The ESBI program will obtain these goals through the implementation of business and technology improvements with specific focus on increased product quality and reduced cycle time. This program has brought together competitors in the business to solve sector wide problems. This paper presents the framework of the teaming approach as well as results achieved in quality and cycle time improvements through technical and business process improvements.
Technical Paper

Air Cycle Machine for Transient Model Validation

2016-09-20
2016-01-2000
As technology for both military and civilian aviation systems mature into a new era, techniques to test and evaluate these systems have become of great interest. To achieve a general understanding as well as save time and cost, the use of computer modeling and simulation for component, subsystem or integrated system testing has become a central part of technology development programs. However, the evolving complexity of the systems being modeled leads to a tremendous increase in the complexity of the developed models. To gain confidence in these models there is a need to evaluate the risk in using those models for decision making. Statistical model validation techniques are used to assess the risk of using a given model in decision making exercises. In this paper, we formulate a transient model validation challenge problem for an air cycle machine (ACM) and present a hardware test bench used to generate experimental data relevant to the model.
Technical Paper

Across-Gimbal Ambient Thermal Transport System

2001-07-09
2001-01-2195
This paper describes the development, operation and testing of an across-gimbal ambient thermal transport system (GATTS) for carrying cryocooler waste heat across a 2-axis gimbal. The principal application for the system is space-based remote sensing spacecraft with gimbaled cryogenics optics and/or infrared sensors. GATTS uses loop heat pipe (LHP) technology with ammonia as the working fluid and small diameter stainless steel tubing to transport 100–275 W across a two-axis gimbal. The tubing is coiled around each gimbal axis to provide flexibility (less than 0.68 N-m [6 lbf-in] of tubing-induced torque per axis) and fatigue life. Stepper motors are implemented to conduct life cycling and to assess the impact of motion on thermal performance. An LHP conductance of approximately 7.5 W/C was demonstrated at 200 W, with and without gimbal motion. At the time this paper was written, the gimbal had successfully completed over 500,000 cycles of operation with no performance degradation.
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

2019-03-19
2019-01-1386
Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
X