Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measurement of Biaxial Strength of New vs. Used Windshields

2000-10-03
2000-01-2721
This paper presents the strength data for conventional automotive windshields in both the new and used conditions. More specifically, the biaxial strength of outer surface of curved and symmetrically laminated windshield, measured in biaxial flexure, is reported. The relative contributions of inplane membrane stress, which can be significant for new windshields, and bending stress are quantified with the aid of strain gauge rosettes mounted on both the outer and inner surfaces of windshield. The strength distribution for new and used windshields, based on Weibull distribution function, is found to be multimodal indicating more than one family of surface flaws. Depending on handling damage during manufacturing, assembly and installation processes, the low strength region of new windshields can approach that of used windshields with 50,000+ road miles!
Technical Paper

Effect of Glazing System Parameters on Glazing System Contribution to a Lightweight Vehicle's Torsional Stiffness and Weight

2000-10-03
2000-01-2719
A finite element model of a lightweight vehicle body-in-white has been developed to study the contribution of a lightweight vehicle's glazing system to its overall structural rigidity. This paper examines the effect of the glazing thickness and glazing molding stiffness on the glazing system contribution to a lightweight vehicle's torsional rigidity. The individual stiffness contributions of the front and back glazing were determined, as well as the weight of the glazing as a function of its thickness. In the first set of analyses detailed in this paper, the torsional and bending loadcase was investigated by comparing the baseline model to a no-glass model. It was shown that the glazing system contributes significantly to the overall structural rigidity of the auto-body. The difference was mainly in the torsional rigidity which was 12.4% more rigid than the no-glass model. The bending rigidity was only increased by 0.5% in the glazing model.
X