Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Test-Model Correlation in Spacecraft Thermal Control by Means of MonteCarlo Techniques

2007-07-09
2007-01-3120
In the paper some methods are presented, with the corresponding practical examples, related to MonteCarlo (MC) techniques for thermal model/test correlation purposes. The MonteCarlo techniques applied to model correlation are intended to be used as an alternative to empirical ‘manual’ correlation techniques, gradients methods, matrix methods based on least square fit minimization. First of all, Design Of Experiments (DoE) tools are used to determine the model response to uncertain parameters and the confidence level of such a response. A sensitivity map is built, allowing the design of the test to maximize the response of the system to the uncertain parameters. Techniques derived from the extreme statistics are used to extrapolate data beyond test limits, with a sufficient confidence in the queue behaviour.
Technical Paper

Preliminary Design of a Bio-Regenerative ECLSS Technological Demo Plant for Air and Water Management

2008-06-29
2008-01-2013
Future human exploration roadmaps involve the development of temporary or permanent outposts on Moon and Mars. The capability of providing astronauts with proper conditions for living and working in extraterrestrial environments is therefore a key issue for the sustainability of those roadmaps, and closed-loop Environment Control and Life Support Systems (ECLSSs) and bio-regenerative plants represent the necessary evolution of current technologies for complying with the challenging requirements imposed. This paper presents the architectural design of a terrestrial plant to be exploited to test and validate air and water management technologies for a biological life support system in a closed environment. The plant includes a crew area and a plant growth area. These two spaces can be considered as either a unique volume or two separated environments with reduced contact, e.g. for plant harvesting or other up-keeping activities.
Technical Paper

MonteCarlo Techniques in Thermal Analysis – Design Margins Determination Using Reduced Models and Experimental Data

2006-07-17
2006-01-2113
In the paper several application techniques of MonteCarlo (MC) method applied to thermal analysis of space vehicles are presented. Although these methods are widely used in other engineering domains, their introduction to the thermal one is quite recent and not fully developed in the industrial practice. This paper aims at showing that, even without demanding computation resources (all what presented has been obtained with a single processor PC) MonteCarlo analysis techniques, in a preliminary design phase, can support and integrate engineering judgment of the thermal designer. In particular, it is exploited the applicability of the method to reduced thermal models, with a clear advantage in terms of computation time. An original approach is proposed, and results are shown. The papers shows the applicability of the MC method to the case when experimental data of the uncertain parameters are available, using the bootstrap re-sampling techniques.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
Technical Paper

Experimental Characterization of Power Dissipation of Battery Cells for Space Environment

2002-07-15
2002-01-2544
An experimental campaign is presented aiming at the characterization of thermal dissipation of batteries to be used on board of small satellites. A suitably designed device allows to manage automatically the orbital cycling simulation between battery cell charge and discharge. The cell thermal performance is characterized in various combinations of temperature, discharge current and Depth of Discharge. The gathered data are used for providing guidelines in the design of a family of Italian Small Satellites.
Technical Paper

Design Restraints in Space Laboratories

2003-07-07
2003-01-2435
1Restraints constitute the unique and necessary aids for living and working in microgravity conditions in which crewmembers need facilities as support to move around and as restraints while they work. In environments with microgravity, disturbance to the vestibular sense, when it occurs together with conflicting visual and perceptive stimuli, can cause disorientation, vertigo and illusions regarding posture and movement. Therefore, the design of restraints is a critical ingredient of success for crewmembers performance in space during both IVA and EVA activities. Standard restraints and mobility aids are provided on ISS such that all installation, operation, and maintenance can be performed: Foot Restraint, Adjustable Length Tether, Handrails, Adjustable Length Tether and Torso Restraint Assembly. Crewmembers use Standard Foot Restraints and Handrails to improve the movement capacities and the postural stability.
Technical Paper

Aerodynamic Analysis of an Unmanned Cyclogiro Aircraft

2018-10-29
2018-01-6005
Very little is currently known of the aerodynamic interaction between neighboring cycloidal rotors. Such knowledge is, however, of crucial importance to tune the controller and rotor disposition of a cyclogiro aircraft. Thus, a three-dimensional computational fluid dynamics (CFD) model is developed, validated, and used to analyze the D-Dalus L1 four-rotor unmanned aircraft operating under several configurations. The model solves the Euler equations using the OpenFOAM toolbox in order to provide fast results on a desktop computer. Validation is performed against thrust forces and flow streamlines obtained during wind tunnel experiments at various flight velocities. Numerical results from CFD match the trends of the experimental data. Flow behavior matches the video footage of the wind tunnel tests. Although boundary layer effects are neglected, satisfactory results are obtained both qualitatively and quantitatively.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
X