Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Prediction of 1D Unsteady Flows in the Exhaust System of a S.I. Engine Including Chemical Reactions in the Gas and Solid Phase

2002-03-04
2002-01-0003
The paper describes the research work concerning the simulation of 1D unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN has been developed to enable the concurrent prediction of the wave motion in the intake and exhaust ducts, the chemical composition of the gas discharged by the cylinder of a s.i. engine, the chemical and thermal behavior of catalytic converters. The effect of considering the transport of chemical species with reactions in gas phase (post-oxidation of unburned HC in the exhaust manifold) and in solid phase (conversion of pollutants in the catalyst) on the predicted wave motion is reported.
Technical Paper

Prediction of S.I. Engine Emissions During an ECE Driving Cycle via Integrated Thermo-Fluid Dynamic Simulation

2004-03-08
2004-01-1001
The paper describes the research work carried out on the thermo-fluid dynamic modeling of an S.I. engine coupled to the vehicle in order to predict the engine and tailpipe emissions during the ECE European driving cycle. The numerical code GASDYN has been extended to simulate the engine + vehicle operation during the first 90 seconds of the NEDC driving cycle, taking account of the engine and exhaust system warm-up after the cold start. The chemical composition of the engine exhaust gas is calculated by means of a thermodynamic multi-zone combustion model, augmented by kinetic emission sub-models for the prediction of pollutant emissions. A simple procedure has been implemented to model the vehicle dynamic behavior (one degree of freedom model). A closed-loop control strategy (proportional-derivative) has been introduced to determine the throttle opening angle, corresponding to the engine operating point when the vehicle is following the ECE cycle.
Technical Paper

Modeling the Pollutant Emissions from a S.I. Engine

2002-03-04
2002-01-0006
Nowadays 1D fluid dynamic models are widely used by engine designers, since they can give sufficiently accurate predictions in short times, allowing to support the optimization and development work of any prototype. According to the last requirements in terms of pollutant emission control, some enhancements have been introduced in the 1D code GASDYN, to improve its ability in predicting the composition of the exhaust gas discharged by the cylinders and the transport of the chemical species along the exhaust system. The main aspects of the methods adopted to model the combustion process and the related formation of pollutants are described in the paper. To account for the burnt gas stratification, two different approaches have been proposed, depending on the expected turbulence levels inside the combustion chamber. The reliability of the simulation of the pollutant formation process has been enhanced by the integration of the thermodynamic module with the Chemkin code.
X