Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results

2018-04-03
2018-01-1089
Modern vehicles have several active systems on board such as the Electronic Stability Control. Many of these systems require knowledge of vehicle states such as sideslip angle and yaw rate for feedback control. Sideslip angle cannot be measured with the standard sensors present in a vehicle, but it can be measured by very expensive and large optical sensors. As a result, state observers have been used to estimate sideslip angle of vehicles. The current state of the art does not present an algorithm which can robustly estimate the sideslip angle for vehicles with all-wheel drive. A deep learning network based sideslip angle observer is presented in this article for robust estimation of vehicle sideslip angle. The observer takes in the inputs from all the on board sensors present in a vehicle and it gives out an estimate of the sideslip angle. The observer is tested extensively using data which are obtained from proving grounds in high tire-road friction coefficient conditions.
X