Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Real Time Modelling of Automotive Electric Drives for Hardware-in-the-Loop Applications

2023-08-28
2023-24-0028
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine.
Technical Paper

Performance Optimization for the XAM Hybrid Electric Vehicle Prototype

2012-04-16
2012-01-0773
Given the ever-increasing concern about environmental issues, the automotive industry is focusing on the development of innovative technologies that allow reduction of gas emissions and fuel consumption. Over the last few years, Hybrid Electric Vehicles (HEV) and Fuel Cell Vehicles have been developed as the most promising alternative solutions for many car manufacturers. Although fuel cells are considered as the best technology to have zero emission, the impact on infrastructure for a large-scale deployment is not yet solved. For this reason, HEV represent a valid shorter-term alternative that guarantees drastic emissions reduction and reduced fuel consumption with a much lower infrastructural impact. This paper reports the results obtained by the optimization of the emissions and fuel performances of a hybrid electric city vehicle for urban transportation named XAM (eXtreme Automotive Mobility). In order to optimize these performances, a 1D model of the vehicle has been created.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Technical Paper

Optimization of IDRApegasus: Fuel Cell Hydrogen Vehicle

2013-04-08
2013-01-0964
Given the growing concern for environmental issues, the automotive industry is working more deeply on the development of innovative technologies that reduce gas emissions and fuel consumption. Many car manufacturers have identified hybrid electric vehicles (HEV) and fuel cell vehicles as the most promising solutions alternatives. IDRApegasus is a fuel cell hydrogen vehicle developed at the Politecnico of Turin. It participated at the Shell Eco-marathon Europe in Rotterdam (Netherlands) from 17-19 May 2012, a competition for low energy consumption vehicles and also an educational project that joins the value of sustainable development with a vehicle that will use the smallest amount of fuel and produce the lowest emissions possible.
Journal Article

Offline and Real-Time Optimization of EGR Rate and Injection Timing in Diesel Engines

2015-09-06
2015-24-2426
New methodologies have been developed to optimize EGR rate and injection timing in diesel engines, with the aim of minimizing fuel consumption (FC) and NOx engine-out emissions. The approach entails the application of a recently developed control-oriented engine model, which includes the simulation of the heat release rate, of the in-cylinder pressure and brake torque, as well as of the NOx emission levels. The engine model was coupled with a C-class vehicle model, in order to derive the engine speed and torque demand for several driving cycles, including the NEDC, FTP, AUDC, ARDC and AMDC. The optimization process was based on the minimization of a target function, which takes into account FC and NOx emission levels. The selected control variables of the problem are the injection timing of the main pulse and the position of the EGR valve, which have been considered as the most influential engine parameters on both fuel consumption and NOx emissions.
Technical Paper

Methodology and Application on Load Monitoring Using Strain-Gauged Bolts in Brake Calipers

2022-03-29
2022-01-0922
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system.
Technical Paper

MPC-Based Cooperative Longitudinal Control for Vehicle Strings in a Realistic Driving Environment

2023-04-11
2023-01-0689
This paper deals with the energy efficiency of cooperative cruise control technologies when considering vehicle strings in a realistic driving environment. In particular, we design a cooperative longitudinal controller using a state-of-the-art model predictive control (MPC) implementation. Rather than testing our controller on a limited set of short maneuvers, we thoroughly assess its performance on a number of regulatory drive cycles and on a set of driving missions of similar length that were constructed based on real driving data. This allows us to focus our assessment on the energetic aspects in addition to testing the controller’s robustness. The analyzed controller, based on linear MPC, uses vehicle sensor data and information transmitted by the vehicle driving the string to adjust the longitudinal trajectory of the host vehicle to maintain a reduced inter-vehicular distance while simultaneously optimizing energy efficiency.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
Technical Paper

Effects of Rapeseed and Jatropha Methyl Ester on Performance and Emissions of a Euro 5 Small Displacement Automotive Diesel Engine

2011-09-11
2011-24-0109
The effects of using neat and blended (30% vol.) biodiesel, obtained from Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The impact of biodiesel usage on engine performance at full load was analyzed for a specifically adjusted ECU calibration: the same torque levels measured under diesel operation could be obtained, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits. In addition, the effects of biodiesel blends on brake-specific fuel consumption and on engine-out exhaust emissions (CO₂, CO, HC, NOx and smoke) were also evaluated at 6 different part load operating conditions, representative of the New European Driving Cycle. Emissions were also measured at the DPF outlet, thus providing information about after-treatment devices efficiencies with biodiesel.
Technical Paper

Dynamic Model of a Load-Following Fuel Cell Vehicle: Impact of the Air System

2002-03-04
2002-01-0100
Fuel cell vehicles promise to become, in near future, competitive with conventional cars in terms of performance, efficiency and compliance with emission reduction schedules. However, many steps still have to be done, and a series of fundamental choices, such as high vs. low air pressure system options remain unresolved. Modeling can be a powerful instrument to evaluate different components or plant layout, and to predict the dynamic behavior of a fuel cell system. The first part of this paper illustrates the implementation of a direct engineering dynamic model of a load-following fuel cell vehicle. The modeling techniques, assumptions and basic equations are explained for each subsystem, with special attention to the air supply system, whose dynamic simulation was one of the primary targets of this work. Some of the simulation results are presented in the second part.
Journal Article

Design and Modelling of the Powertrain of a Hybrid Fuel Cell Electric Vehicle

2021-04-06
2021-01-0734
This paper presents a Fuel Cell Electric Vehicle (FCEV) powertrain development and optimization, aiming to minimize hydrogen consumption. The vehicle is a prototype that run at the Shell Eco-marathon race and its powertrain is composed by a PEM fuel cell, supercapacitors and a DC electric motor. The supercapacitors serve as an energy buffer to satisfy the load peaks requested by the electric motor, allowing a smoother (and closer to a stationary application) working condition for the fuel cell. Thus, the fuel cell can achieve higher efficiency rates and the fuel consumption is minimized. Several models of the powertrain were developed using MATLAB-Simulink and then experimentally validated in laboratory and on the track. The proposed models allow to evaluate two main arrangements between fuel cell and supercapacitors: 1) through a DC/DC converter that sets the FC current to a desired value; 2) using a direct parallel connection between fuel cell and supercapacitors.
Journal Article

Combustion Prediction by a Low-Throughput Model in Modern Diesel Engines

2011-04-12
2011-01-1410
A new predictive zero-dimensional low-throughput combustion model has been applied to both PCCI (Premixed Charge Compression Ignition) and conventional diesel engines to simulate HRR (Heat Release Rate) and in-cylinder pressure traces on the basis of the injection rate. The model enables one to estimate the injection rate profile by means of the injection parameters that are available from the engine ECU (Electronic Control Unit), i.e., SOI (Start Of main Injection), ET (Energizing Time), DT (Dwell Time) and injected fuel quantities, taking the injector NOD (Nozzle Opening Delay) and NCD (Nozzle Closure Delay) into account. An accumulated fuel mass approach has been applied to estimate Qch (released chemical energy), from which the main combustion parameters that are of interest for combustion control in IC engines, such as, SOC (Start Of Combustion), MFB50 (50% of Mass Fraction Burned) have been derived.
Journal Article

Analysis of Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and JME

2011-04-12
2011-01-0328
The effects of using a B30 blend of ultra-low sulfur diesel and two different Fatty Acid Methyl Esters (FAME) obtained from both Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME) in a Euro 5 small displacement passenger car diesel engine on both full load performance and part load emissions have been evaluated in this paper. In particular the effects on engine torque were firstly analyzed, for both a standard ECU calibration (i.e., without any special tuning for the different fuel characteristics) and for a specifically adjusted ECU calibration obtained by properly increasing the injected fuel quantities to compensate for the lower LHV of the B30: with the latter, the same torque levels measured under diesel operation could be observed with the B30 blend too, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits.
Technical Paper

A Prototype Vehicle for Powertrain and Chassis Control System Tests

2011-06-09
2011-37-0028
A prototype vehicle (PV) is equipped to test powertrain and active chassis systems with innovative control strategies for safety and energy saving. Additional sensors installed on-board allow the measurement and estimation of new information useful to the vehicle dynamic control. The PV was based on a serial production passenger car with Electronic Stability Control (ESC). Testing activities on Controller Area Network (CAN) and ESC Electronic Control Unit (ECU) are carried out to compare the vehicle dynamic performance obtainable using serial production rather than customized control strategies, while maintaining the same hardware. The PV is also utilized to provide reverse engineering analysis about the implemented control strategy for the ESC working in serial production mode.
X