Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero Dimensional Models for EGR Mass-Rate and EGR Unbalance Estimation in Diesel Engines

2017-09-04
2017-24-0070
A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flow-rates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Journal Article

Use of an Innovative Predictive Heat Release Model Combined to a 1D Fluid-Dynamic Model for the Simulation of a Heavy Duty Diesel Engine

2013-09-08
2013-24-0012
An innovative 0D predictive combustion model for the simulation of the HRR (heat release rate) in DI diesel engines was assessed and implemented in a 1D fluid-dynamic commercial code for the simulation of a Fiat heavy duty diesel engine equipped with a Variable Geometry Turbocharger system, in the frame of the CORE (CO2 reduction for long distance transport) Collaborative Project of the European Community, VII FP. The 0D combustion approach starts from the calculation of the injection rate profile on the basis of the injected fuel quantities and on the injection parameters, such as the start of injection and the energizing time, taking the injector opening and closure delays into account. The injection rate profile in turn allows the released chemical energy to be estimated. The approach assumes that HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber.
Technical Paper

Turbulence Spectrum Investigation in a DI Diesel Engine with a Reentrant Combustion Bowl and a Helical Inlet Port

1996-10-01
962019
The frequency spectral structure of turbulence spatial components was investigated in the cylinder of an automotive diesel engine with a high-squish reentrant in-piston bowl of the conical type and a helical inlet port. A sophisticated HWA technique using single- and dual-sensor probes was applied for instantaneous air velocity measurements along the injector axis at practical engine speeds, up to 3000 rpm, under motored conditions. The investigation was carried out for both cycle-resolved and conventional turbulence components, as were determined by different wire orientations, throughout the induction, the compression and the early stage of the expansion stroke. The anisotropy of turbulence spectral structure and its temporal evolution during the engine cycle were examined by evaluating the autospectral density functions and the time scales of each turbulence component in consecutive correlation crank-angle intervals.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines

2006-04-03
2006-01-0437
The potential of an electric assisted turbocharger for a heavy-duty diesel engine has been analyzed in this work, in order to evaluate the turbo-lag reductions and the fuel consumption savings that could be obtained in an urban bus for different operating conditions. The aim of the research project was to replace the current variable geometry turbine with a fixed geometry turbine, connecting an electric machine which can be operated both as an electric motor and as an electric generator to the turbo shaft. The electric motor can be used to speed up the turbocharger during the acceleration transients and reduce the turbo-lag, while the generator can be used to recover the excess exhaust energy when the engine is operated near the rated speed, in order to produce electrical power that can be used to drive engine auxiliaries. In this way the engine efficiency can be improved and a kind of “electric turbocompounding” can be obtained.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Journal Article

Steady-State and Transient Operations of a Euro VI 3.0L HD Diesel Engine with Innovative Model-Based and Pressure-Based Combustion Control Techniques

2017-03-28
2017-01-0695
In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.
Journal Article

Spray and Soot Formation Analysis by Means of a Quasi-Dimensional Multizone Model in a Single Cylinder Diesel Engine under Euro 4 Operating Conditions

2015-09-06
2015-24-2416
An investigation has been carried out on the spray penetration and soot formation processes in a research diesel engine by means of a quasi-dimensional multizone combustion model. The model integrates a predictive non stationary 1D spray model developed by the Sandia National Laboratory, with a diagnostic multizone thermodynamic model, and is capable of predicting the spray formation, combustion and soot formation processes in the combustion chamber. The multizone model was used to analyze three operating conditions, i.e., a zero load point (BMEP = 0 bar at 1000 rpm), a medium load point (BMEP = 5 bar at 2000 rpm) and a medium-high load point (BMEP = 10 bar at 2000 rpm). These conditions were experimentally tested in an optical single cylinder engine with the combustion system configuration of a 2.0L Euro4 GM diesel engine for passenger car applications.
Technical Paper

Speed Dependence of Turbulence Properties in a High-Squish Automotive Engine Combustion System

1996-02-01
960268
The variation of turbulent flow quantities with engine speed has been investigated in the combustion chamber of an automotive diesel engine with a high-squish conical-type in-piston bowl and one helicoidal intake duct, at speeds covering the wide range of 600-3000 rpm, under motored conditions. The investigation had the main purpose of studying the engine speed effect on the structure of both cycle-resolved and conventional turbulence over the induction, the compression and the early stage of the expansion stroke. The low frequency component of the fluctuating motion was also investigated.
Technical Paper

Sensitivity Analysis of the Design Parameters of a Dual-Clutch Transmission Focused on NVH Performance

2016-04-05
2016-01-1127
This paper presents a methodology for the assessment of the NVH (noise vibration and harshness) performance of Dual Clutch Transmissions (DCTs) depending on some transmission design parameters, e.g. torsional backlash in the synchronizers or clutch disc moment of inertia, during low speed maneuvers. A 21-DOFs nonlinear dynamic model of a C-segment passenger car equipped with a DCT is used to simulate the torsional behavior of the driveline and to estimate the forces at the bearings. The impacts between the teeth of two engaging components, e.g. gears and synchronizers, generate impulses in the forces, thus loading the bearings with force time-history characterized by rich frequency content. A broadband excitation is therefore applied to the gearbox case, generating noise and vibration issues.
Technical Paper

Real-Time Calculation of EGR Rate and Intake Charge Oxygen Concentration for Misfire Detection in Diesel Engines

2011-09-11
2011-24-0149
A new procedure for the real-time estimation of the EGR rate and charge oxygen concentration has been developed, assessed and applied to a low-compression ratio GMPT-E EURO V diesel engine. High EGR rates are usually employed in modern diesel engines to reduce combustion temperatures and NOx emissions, especially at medium-low load and speed conditions. The EGR rate is usually calibrated in steady-state conditions, but, under transient conditions, it can be responsible for misfire occurrence or non optimal combustion cycles, if not properly controlled. In other words, combustion instabilities can occur, especially during tip-in maneuvers, which imply transition from high EGR (low load) to low EGR (high load) rates. Misfire is determined by a temporary reduction in the intake charge oxygen concentration during the closure of the EGR valve.
Journal Article

Potentialities of Boot Injection Combined with After Shot for the Optimization of Pollutant Emissions, Fuel Consumption and Combustion Noise in Passenger Car Diesel Engines

2017-03-14
2017-01-9277
The present paper illustrates an investigation about the potentialities of injection rate shaping coupled with an after injection. A pilot shot can either be absent or present before the rate-shaped boot injection. The experimental tests have been performed on a partial PCCI Euro 5 diesel engine endowed with direct-acting piezoelectric injectors. Starting from optimized triple pilot-main-after injection strategies, boot injection was implemented by maintaining the direct-acting piezo injector needle open at part lift. The results of two steady state working conditions have been presented in terms of engine-out emissions, combustion noise and brake specific fuel consumption. In addition, in-cylinder analyses of the pressure, heat-release rate, temperature and emissions have been evaluated. Considering the in-cylinder pressure traces and the heat release rate curves, the injection rate shaping proved to influence combustion in the absence of a pilot injection to a great extent.
Journal Article

Pollutants Emissions During Mild Catalytic DPF Regeneration In Light-Duty Vehicles

2009-04-20
2009-01-0278
La1-xAxNi1-yByO3 nanostructured perovskite-type oxides catalysts (where A = Na, K, Rb and B = Cu; x = 0, 0.2 and y = 0, 0.05, 0.1), also supporting 2% in weight of gold, were prepared via the so-called “Solution Combustion Synthesis (SCS)” method, and characterized by means of XRD, BET, FESEM-EDS and TEM analyses. The performance of these catalysts evaluated. The 2 wt.% Au-La0.8K0.2Ni0.9Cu0.1O3 showed the best performance with a peak carbon combustion temperature of 367°C and the half conversion of CO reached at 141°C. The same nanostructured catalyst, deposited by in situ SCS directly over a SiC filter and tested on real diesel exhaust gases, fully confirmed the encouraging results obtained on the powder catalyst.
Technical Paper

Performance and Emission Comparison between a Conventional Euro VI Diesel Engine and an Optimized PCCI Version and Effect of EGR Cooler Fouling on PCCI Combustion

2018-04-03
2018-01-0221
Premixed charge compression ignition (PCCI) is an advanced combustion mode that has the aim of simultaneously reducing particulate matter and nitrogen oxide exhaust emissions, compared with conventional diesel combustion, thanks to a partially premixed charge and low temperature combustion. In this work, PCCI combustion has been implemented by means of an early single-injection strategy and large amounts of recirculated exhaust gas. Starting from a commercial Euro VI on-road engine, the engine hardware has been modified to optimize PCCI operations. This has involved adopting a smaller turbo group, a new combustion chamber and injectors, and a dedicated high-pressure exhaust gas recirculation system. The results, in terms of engine performance and exhaust emissions, under steady-state operation conditions, are presented in this work, where the original Euro VI calibration of the conventional engine has been compared with the PCCI calibration of the optimized hardware engine.
Technical Paper

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-04-12
2011-01-1349
A fuel-cell-based system's performance is mainly identified in the overall efficiency, strongly depending on the amount of power losses due to auxiliary devices to supply. In such a situation, everything that causes either a decrease of the available power output or an increment of auxiliary losses would determine a sensible overall efficiency reduction.
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Journal Article

Optimizing the Calibration of a Turbocharged GDI Engine through Numerical Simulation and Direct Optimization

2010-04-12
2010-01-0780
Different optimization strategies for the optimization of the calibration of a turbocharged GDI engine through numerical simulation were analyzed, aiming to evaluate the opportunities offered by direct optimization techniques. A one-dimensional fluid dynamic engine model was used to predict engine performance, taking into account knock and exhaust temperature constraints. Air fuel ratio, spark advance, boost pressure and cam phasing were optimized by means of different optimization strategies, including direct search as well as numerical methods. Both full load (with maximum bmep targets) and part load (with minimum bsfc targets) were considered.
X