Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Real-Time Predictive Modeling of Combustion and NOx Formation in Diesel Engines Under Transient Conditions

2012-04-16
2012-01-0899
The present work has the aim of developing a fast approach for the predictive calculation of in-cylinder combustion temperatures and NOx formation in diesel engines, under steady state and transient conditions. The model has been tested on a PC, and found to require very little computational time, thus suggesting it could be implemented in the ECU (Engine Control Unit) of engines for model-based control tasks. The method starts with the low-throughput predictive combustion model that was previously developed by the authors, which allows the predictive estimation of the heat-release rate and of the in-cylinder pressure trace to be made on the basis of the injection parameters and of a few quantities measured by the ECU, such as the intake manifold pressure and temperature.
Journal Article

Impact on Performance, Emissions and Thermal Behavior of a New Integrated Exhaust Manifold Cylinder Head Euro 6 Diesel Engine

2013-09-08
2013-24-0128
The integration of the exhaust manifold in the engine cylinder head has received considerable attention in recent years for automotive gasoline engines, due to the proven benefits in: engine weight diminution, cost saving, reduced power enrichment, quicker engine and aftertreatment warm-up, improved packaging and simplification of the turbocharger installation. This design practice is still largely unknown in diesel engines because of the greater difficulties, caused by the more complex cylinder head layout, and the expected lower benefits, due to the absence of high-load enrichment. However, the need for improved engine thermomanagement and a quicker catalytic converter warm-up in efficient Euro 6 diesel engines is posing new challenges that an integrated exhaust manifold architecture could effectively address. A recently developed General Motors 1.6L Euro 6 diesel engine has been modified so that the intake and exhaust manifolds are integrated in the cylinder head.
Journal Article

Development and Validation of a Real-Time Model for the Simulation of the Heat Release Rate, In-Cylinder Pressure and Pollutant Emissions in Diesel Engines

2016-01-15
2015-01-9044
A real-time mean-value engine model for the simulation of the HRR (heat release rate), in-cylinder pressure, brake torque and pollutant emissions, including NOx and soot, has been developed, calibrated and assessed at both steady-state and transient conditions for a Euro 6 1.6L GM diesel engine. The chemical energy release has been simulated using an improved version of a previously developed model that is based on the accumulated fuel mass approach. The in-cylinder pressure has been evaluated on the basis of the inversion of a single-zone model, using the net energy release as input. The latter quantity was derived starting from the simulated chemical energy release, and evaluating the heat transfer of the charge with the walls. NOx and soot emissions were simulated on the basis of semi-empirical correlations that take into account the in-cylinder thermodynamic properties, the chemical energy release and the main engine parameters.
X