Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

eFlite Dedicated Hybrid Transmission for Chrysler Pacifica

2018-04-03
2018-01-0396
Electrified powertrains will play a growing role in meeting global fuel consumption and CO2 requirements. In support of this, FCA US has developed its first dedicated hybrid transmission (the eFlite® transmission), used in the Chrysler Pacifica Hybrid. The Chrysler Pacifica is the industry’s first electrified minivan. [2] The new eFlite hybrid transmission architecture optimizes performance, fuel economy, mass, packaging and NVH. The transmission is an electrically variable FWD transaxle with an input split configuration and incorporates two electric motors, both capable of driving in EV mode. The lubrication and cooling system makes use of two pumps, one electrically operated and one mechanically driven. The Chrysler Pacifica has a 16kWh lithium ion battery and a 3.6-liter Pentastar® engine which offers total system power of 260 hp with 84 MPGe, 33 miles of all electric range and 566 miles total driving range. [2] This paper’s focus is on the eFlite transmission.
Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Technical Paper

Virtual and Experimental Analysis of Brake Assist Systems

2006-04-03
2006-01-0477
The paper deals with the virtual and experimental analysis of two commercial Mechanical Brake Assist systems. They are described in detail, then modeled and experimentally evaluated through a Hardware-In-the-Loop test bench and road tests. Three different kinds of drivers are compared, from the point of view of the performance increase promised by Brake Assist during an emergency brake maneuver. The three driver types are based on the measurement of the behavior of real drivers, as it is presented in specific research activities in literature.
Technical Paper

Virtual Simulation for Clutch Thermal Behavior Prediction

2018-05-30
2018-37-0021
The clutch is that mechanical part located in an internal combustion engine vehicle which allows the torque transmission from the shaft to the wheels, permitting at the same time gear shifting and supporting engine revolutions while the car is idling. This component exploits friction as working principle, therefore heat generation is in its own nature. The comprehension of all the critical issues related to thermal emission, and also of the principal physical parameters driving the phenomena are a must in design phases. The subject of this paper is the elaboration of an accurate, but also easy to use and easily replicable, methodology to simulate thermal behavior of a clutch operating inside its usual environment. The present methodology allows to prevent corrective actions in the last phase of the projects (real testing), such as changes in gear ratios, that likely worsen CO2 emissions, permitting to achieve the wished thermal performance of the clutch avoiding late changes.
Technical Paper

Virtual Method for Electronic Stop-Start Simulation & VDV Prediction Using Modified Discrete Signal Processing for Short Time Signals

2020-04-14
2020-01-1270
Electronic Stop-Start (ESS) system automatically stops and restarts the engine to save energy, improve fuel economy and reduce emissions when the vehicle is stationary during traffic lights, traffic jams etc. The stop and start events cause unwanted vibrations at the seat track which induce discomfort to the driver and passengers in the vehicle. These events are very short duration events, usually taking less than a second. Time domain analysis can help in simulating this event but it is difficult to see modal interactions and root cause issues. Modal transient analysis also poses a limitation on defining frequency dependent stiffness and damping for multiple mounts. This leads to inaccuracy in capturing mount behavior at different frequencies. Most efficient way to simulate this event would be by frequency response analysis using modal superposition method.
Technical Paper

Virtual Evaluation of Seat Shake Performance Using Four Poster Shaker

2021-04-06
2021-01-0325
For the designing of world class vehicles, ride comfort is one of the criteria that vehicle manufacturers are constantly trying to improve. The automotive seating system is an important sub-system in a vehicle that contributes to the ride comfort of the vehicle occupants. Seat vibrations are perceived by the occupants and make them feel uncomfortable during driving conditions. These vibrations are majorly transferred from engine and road excitation loads. For road excitation loads, the road testing may not be accurately repeatable, and measurements based on four post shakers are used to assess the discomfort. The major challenges for the vehicle manufactures is the availability of physical prototypes at an early stage of vehicle development and any changes in the design due to test validation leads to huge cost and time.
Technical Paper

Virtual Accelerometer Approach to Create Vibration Profile for Automotive Component Shake Test

2023-04-11
2023-01-0722
Vibration shaker testing is a great tool of validating the vibration fatigue performance of automotive components & systems. However, the representative vibration schedule requires a pre-knowledge of the acceleration history for the test object, which usually is not available until the later development phase of a vehicle program when physical properties are available. Sometimes, a generic vibration schedule developed from the worst-case loading profiles are used with risk of lacking correlation with later full vehicle durability test such as Road Test Simulator (RTS) or Proving Ground (PG) road test due to the higher loading amplitude. This paper proposes a virtual accelerometer approach to collect acceleration responses of a component from a virtual vehicle model. First, a multiple body dynamic model will be produced for virtual load calculation over a series of digitalized virtual proving ground road profiles.
Technical Paper

Vehicle Path-Tracking Control with Dual-Motor SBW System

2023-04-11
2023-01-0692
Improvement of vehicle path-tracking performance not only affects the vehicle driving safety and comfort but is also essential for autonomous driving technology. The current research focuses on vehicle path-tracking control study and application of dual-motor SBW system. The preview driver model is developed by considering the lateral and yaw tracking. MPC (model predictive control) and LQR (linear quadratic regulator) path following controllers are developed to compare the tracking control performance. A steer-by-wire (SBW) system of dual-motor configuration is designed with permanent magnet synchronous motor (PMSM) control scheme. Finally, the proposed control methods are verified with different driving cases, which shows that the system can effectively achieve small tracking errors in the simulation, and also can be applied in the future autonomous driving or advanced driver assistance system to maintain the lateral and yaw errors within a safe range during path-tracking.
Technical Paper

Vehicle Mass Estimation from CAN Data and Drivetrain Torque Observer

2017-03-28
2017-01-1590
A method for estimating the vehicle mass in real time is presented. Traditional mass estimation methods suffer due a lack of knowledge of the vehicle parameters, the road surface conditions and most importantly the effect of the vehicle transmission. To resolve these issues, a method independent of a vehicle model is utilized in conjunction with a drivetrain output torque observer to obtain the estimate of the vehicle mass. Simulations and experimental track tests indicate that the method is able to accurately estimate the vehicle mass with a relatively fast rate of convergence compared to traditional methods.
Technical Paper

Vehicle Driveability: Dynamic Analysis of Powertrain System Components

2016-04-05
2016-01-1124
The term driveability describes the driver's complex subjective perception of the interactions with the vehicle. One of them is associated to longitudinal acceleration aspects. A relevant contribution to the driveability optimization process is, nowadays, realized by means of track tests during which a considerable amount of driveline parameters are tuned in order to obtain a good compromise of longitudinal acceleration response. Unfortunately, this process is carried out at a development stage when a design iteration becomes too expensive. In addition, the actual trend of downsizing and supercharging the engines leads to higher vibrations that are transmitted to the vehicle. A large effort is therefore dedicated to develop, test and implement ignition strategies addressed to minimize the torque irregularities. Such strategies could penalize the engine maximum performance, efficiency and emissions. The introduction of the dual mass flywheel is beneficial to this end.
Journal Article

Utilization of Bench Testing in Vehicle Thermal System Development for Extreme Cold Ambient Condition

2020-04-14
2020-01-1390
Automotive thermal systems are becoming complicated each year. The powertrain efficiency improvement initiatives are driving transmission and engine oil heaters into coolant network design alternatives. The initiatives of electrified and autonomous vehicles are making coolant networks even more complex. The coolant networks these days have many heat exchangers, electric water pumps and valves, apart from typical radiators, thermostat and heater core. Some of these heat exchangers, including cabin heaters deal with very small amount of coolant flow rates at different ambient conditions. This paper describes how viscosity can be a major reason for simulation inaccuracy, and how to deal with it for each component in the coolant network. Both experimental and computational aspects have been considered in this paper with wide range of ambient temperatures.
Journal Article

Tribological Behaviour of an Automotive Brake Pad System Under Los Angeles City Traffic Test Conditions

2022-03-29
2022-01-0769
The Los Angeles City Traffic (LACT) brake test is well known acclaimed procedure used by many vehicle manufacturers to assess the brake pad wear behavior and to investigate the Noise, Vibration and Harness (NVH) performance of the brake system. The LACT driving route consists of a set of real-world driving conditions, which has been considered representative of the US passenger vehicle market. The scope of this study is to mimic the LACT test using finite element analysis (FEA) to calculate the wear displacement based on Rhee’s theory. The Leading-edge and trailing edge of the brake pad’s wear tendency is also predicted from the simulation. The finite element model for wear simulation consists of brake system viz., Rotor, Knuckle, Pads, Anchor bracket, Piston, and Caliper.
Technical Paper

Torque Converter Modeling for Torque Control of Hybrid Electric Powertrains

2024-04-09
2024-01-2780
This paper introduces a novel approach to modeling Torque Converter (TC) in conventional and hybrid vehicles, aiming to enhance torque delivery accuracy and efficiency. Traditionally, the TC is modelled by estimating impeller and turbine torque using the classical Kotwicki’s set of equations for torque multiplication and coupling regions or a generic lookup table based on dynamometer (dyno) data in an electronic control unit (ECU) which can be calibration intensive, and it is susceptible to inaccurate estimations of impeller and turbine torque due to engine torque accuracy, transmission oil temperature, hardware variation, etc. In our proposed method, we leverage an understanding of the TC inertia – torque dynamics and the knowledge of the polynomial relationship between slip speed and fluid path torque. We establish a mathematical model to represent the polynomial relationship between turbine torque and slip speed.
Technical Paper

Tire Experimental Characterization Using Contactless Measurement Methods

2021-08-31
2021-01-1114
In the frame of automotive Noise Vibration and Harshness (NVH) evaluation, inner cabin noise is among the most important indicators. The main noise contributors can be identified in engine, suspensions, tires, powertrain, brake system, etc. With the advent of E-vehicles and the consequent absence of the Internal Combustion Engine (ICE), tire/road noise has gained more importance, particularly at mid-speed driving and in the spectrum up to 300 Hz. At the state of the art, the identification and characterization of Noise and Vibration sources rely on pointwise sensors (microphones, accelerometers, strain gauges). Optical methods such as Digital Image Correlation (DIC) and Laser Doppler Vibrometer (LDV) have recently received special attention in the NVH field because they can be used to obtain full-field measurements.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Technical Paper

Testing Wet Clutch Systems for Anti-Shudder Performance

2020-04-14
2020-01-0560
The wet clutch system (WCS) is a complex combination of friction plates, separator plates and fluid (lubricant). The basic function of the WCS is to transfer torque under various operating conditions such as slipping, shifting, start/launch and/or torque converter clutch (TCC) operation. Under these conditions the slope of the coefficient of friction (μ or COF) versus slip speed (μ-v) curve must be positive to prevent shudder of the WCS, a highly undesirable condition in the lubricated friction system. An extended durability duty cycle test procedure is required to evaluate the WCS during which the μ-v curve is monitored for a negative slope, a condition indicating the potential for shudder. The friction plates, separator plates, and lubricant must be tested together and remain together during the test to be properly evaluated as a WCS.
Technical Paper

Test of Inclined Double Beads on Aluminum Sheets

2018-04-03
2018-01-1221
Draw beads are widely used in the binder of a draw die for regulating the restraining force and control the draw-in of a metal blank. Different sheet materials and local panel geometry request different local draw bead configurations. Even the majority of draw bead is single draw bead, the alternative double draw bead does have its advantages, such as less bending damage may be brought to the sheet material and more bead geometry features available to work on. In this paper, to measure the pulling force when a piece of sheet metal passing through a draw bead on an inclined binder, the AA5XXX and AA6XXX materials were tested and its strain were measured with a digital image correlation (DIC) system. Five different types of double bead configurations were tested. The beads are installed in a Stretch-Bend-Draw-System (SBDS) test device. The clearance between a male and a female bead is 10% thicker than the sheet material. A tensile machine was used to record the pulling force.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Technical Paper

Target Setting Process for Hybrid Electric Drives Using TPA, Jury Study, and Torque Management

2019-06-05
2019-01-1453
The idea of improved efficiency without compromising the “fun to drive” aspect has renewed the auto industry’s interest toward electrification and hybridization. Electric drives gain from having multiple gear ratios which can use advantageous operating set points thus increasing range. Furthermore, they benefit significantly from frequent decelerations and stopping as is experienced in city driving conditions. To recuperate as much energy as possible, deceleration is done at high torque. This presents an interesting but serious sound quality issue in the form of highly tonal whine harmonics of rapidly changing gears that do not track with vehicle speed thus being objectionable to the vehicle occupants. This paper presents an NVH target setting process for a hybrid electric transmission being integrated into two existing vehicles, one belonging to the premium segment and another aimed at enthusiasts with off-road applications.
Technical Paper

Study of Ausferrite Transformation Kinetics for Austempered Ductile Irons with and without Ni

2016-04-05
2016-01-0421
This research studies the transformation kinetics of austempered ductile iron (ADI) with and without nickel as the main alloying element. ADI has improved mechanical properties compared to ductile iron due to its ausferrite microstructure. Not only can austempered ductile iron be produced with high strength, high toughness and high wear resistance, the ductility of ADI can also be increased due to high carbon content austenite. Many factors influence the transformation of phases in ADI. In the present work, the addition of nickel was investigated based on transformation kinetics and metallography observation. The transformation fractions were determined by Rockwell hardness variations of ADI specimens. The calculation of transformation kinetics and activation energy using the “Avrami Equation” and “Arrhenius Equation” is done to describe effects of nickel alloy for phase reactions.
X