Refine Your Search

Search Results

Viewing 1 of 1
Technical Paper

Differential Flatness-Based Control of Switched Reluctance Motors

2024-04-09
2024-01-2210
This paper presents a Differential Flatness-Based Control (FBC) approach for the current control of Switched Reluctance Machines (SRMs), a potential candidate for the automotive industry. The main challenges in SRM control methods stem from motor nonlinearity. In electrical drives, FBC has been applied in doubly-fed induction generators, permanent magnet motors, and magnet-assisted synchronous reluctance motors. Among the few papers that have used FBC for SRM, this research distinguishes itself by addressing current control and considering both current and flux-linkage separately as a flat output, an approach not found in previous literature. The performance of the proposed controls is assessed in a three-phase 12/8 SRM against the conventional hysteresis current controller (HCC) and PI controller. Additionally, it is integrated into a torque-sharing function based on a maximum torque per ampere control strategy.
X