Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Hardware-In-the-Loop to Evaluate Active Braking Systems Performance

2005-04-11
2005-01-1580
The paper shortly describes an ABS/ESP Hardware-In-the-Loop (HIL) test bench built by the Vehicle Dynamics Team of the Department of Mechanics of Politecnico di Torino. It consists of a whole brake system, integrated through specific interface (e.g. wheel pressures signals) with a vehicle model running in real time on a dSPACE® board. Different commercial ABS strategies are compared, in a large spectrum of manoeuvres: slow brake apply manoeuvres, panic brake manoeuvres, μ-split brake manoeuvres, brake manoeuvres with a sudden variation of the friction coefficient between tyres and ground. The paper deals with the generation of all the signals required for activating a commercial ESP: steering wheel angle, body yaw rate, body lateral acceleration, engine control, etc… Some of them are transmitted by CAN. Typical handling manoeuvres are used to test the ESP: step steer, double step steer, ramp steer, etc… Several brake manoeuvres are simulated while turning.
Technical Paper

Friction inside Wheel Hub Bearings: Evaluation through Analytical Models and Experimental Methodologies

2007-09-16
2007-24-0138
This paper presents an experimental methodology which can be adopted to measure the friction torque of the bearings in the wheel hubs of passenger vehicles. The first section of the paper highlights the reasons why an experimental device is necessary to have an objective evaluation of the performance of the bearing in terms of friction. In particular, the high level of approximation of the current formulas for the estimation of the friction inside a single bearing is discussed and demonstrated. An analytical methodology for the evaluation of the distribution of the axial load between the two bearings of the wheel hub is presented. However, its practical application for the precise calculation of the distribution of the load has to be checked through experimental tests.
Technical Paper

Four-wheel-steering Control Strategy and its Integration with Vehicle Dynamics Control and Active Roll Control

2004-03-08
2004-01-1061
The paper presents a 4-wheel-steering (4WS) control strategy devoted to reduce the turn diameter for small longitudinal speed values and to obtain a yaw rate damping effect in dynamic manoeuvres. Moreover, the 4WS active system conceived produces compensation both for lateral wind and road irregularities. The main results obtained through a functional vehicle model are presented. 4WS was integrated with a Vehicle Dynamics Control (VDC), which was improved for turn while braking manoeuvres. The results due to integration were very good, with a reduction of both systems interventions. Finally, a VDC-4WS-Active Roll Control (ARC) integration was tried, based on only one reference body yaw rate for all the active systems. The main results obtained are presented and discussed.
Technical Paper

A Failsafe Strategy for a Vehicle Dynamics Control (VDC) System

2004-03-08
2004-01-0190
The paper presents a failsafe strategy conceived for a Vehicle Dynamics Control (VDC) system developed by the Vehicle Dynamics Research Team of Politecnico di Torino. The main equations used by the failsafe algorithm are presented, especially those devoted to estimate steering wheel angle, body yaw rate and lateral acceleration, each of them fundamental to correctly actuate the VDC. The estimation is based on redundancy; each formula is considered according to a weight depending on the kind of maneuver. A new recovery algorithm is presented, which does not deactivate VDC after a sensor fault, but substitutes the sensor signal with the virtually estimated value. The results obtained through simulation are satisfactory. First experimental tests carried out on a ABS/VDC test bench of the Vehicle Dynamics Research Team of Politecnico di Torino confirmed the simulation results.
X