Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Cornering and Braking Behavior Simulation Using a Finite Element Method

2005-04-11
2005-01-0384
This paper presents a vehicle dynamic simulation using a finite element method for performing more accurate simulations under extreme operating conditions with large tire deformation. A new hourglass control scheme implemented in an explicit finite element analysis code LS-DYNA(1) is used to stabilize tire deformation. The tires and suspension systems are fully modeled using finite elements and are connected to a rigid body that represents the whole vehicle body as well as the engine, drive train system and all other interior parts. This model is used to perform cornering and braking behavior simulations and the results are compared with experimental data. In the cornering behavior simulation, the calculated lateral acceleration and yaw rate at the vehicle's center of gravity agree well with the experimental results. Their nonlinear behavior is also well expressed.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards

2001-03-05
2001-01-0200
Experimental investigations were conducted with a direct-injection diesel engine to improve exhaust emission, especially nitrogen oxide (NOx) and particulate matter (PM), without increasing fuel consumption. As a result of this work, a new combustion concept, called Modulated Kinetics (MK) combustion, has been developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion, respectively. The characteristics of a new combustion concept were investigated using a single cylinder DI diesel engine and combustion photographs. The low compression ratio, EGR cooling and high injection pressure was applied with a multi-cylinder test engine to accomplish premixed combustion at high load region. Combustion chamber specifications have been optimized to avoid the increase of cold-start HC emissions due to a low compression ratio.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

1996-05-01
961125
Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

Thermal Fatigue Life of Exhaust Manifolds Predicted by Simulation

2002-03-04
2002-01-0854
A combined computational fluid dynamics (CFD) and finite element (FE) analysis approach has been developed to simulate in the early stages of design the temperature distribution and estimate the thermal fatigue life of an engine exhaust manifold. To simulate the temperature distribution under actual operating conditions, we considered the external and internal flow fields. Digital mock-ups of the vehicle and engine were used to define the geometry of the engine compartment. External-air-flow simulation using in-house CFD code was used to predict the flow fields in the engine compartment and the heat transfer coefficients between the air and the exhaust manifold wall at various vehicle speeds. Unsteady-gas-flow calculation using the STAR-CD thermal- fluids analysis code was to predict the heat transfer coefficients between the exhaust gas and the manifold wall under various operating conditions.
Technical Paper

The Turbocharged 2.8 Liter Engine for the Datsun 280ZX

1982-02-01
820442
Nissan’s new 2.8 liter in-line 6-cylinder turbocharged engine was developed for Che Datsun 280ZX in order to achieve higher performance and improved fuel economy. The Electronic Concentrated Engine Control System (ECCS), controlled by microprocessor, is provided for this 2.8 liter turbocharged engine. ECCS controls fuel injection, ignition timing, EGR rate and idling speed. It solved the problems related to power and fuel economy by optimizing the control parameters. Further, this system contains a barometric pressure compensator and a detonation controller; thus, the performance of this engine is efficient over a wide range of circumstances and fuel octane ratings. During the development of the engine, computer simulation was employed to predict engine performance and select turbocharger size, valve timing and other important factors.
Technical Paper

The Nissan Hybrid Vehicle

2000-04-02
2000-01-1568
Technologies applied to the Nissan Tino Hybrid, marketed in March 2000, in Japan, are expected to evolve into the core powertrain technologies of the future, for the following technical advantages inherent to hybrid EVs: 1 Regeneration of deceleration energy 2 Motor driven propulsion at low speed, combined with power-assisted operation in the mid- and high-load ranges. It is expected that a number of models will be introduced to the market in the future, which pursue these advantages in various forms, resulting in HEV technologies to accelerate the use of electric power for the vehicle. Fuel cell vehicles will be included in this future scenario. In this paper, our view on the future HEV technologies will be described. In addition, the latest technologies applied to the Nissan Tino Hybrid will be introduced.
Technical Paper

The Development of an Experimental Four-Wheel-Steering Vehicle

1986-03-01
860623
This paper describes the development of a vehicle with four-wheel steering in which the rear wheels can be controlled electronically in addition to the conventional front-wheel steering system. In the method for steering the rear wheels, the side-slip angle at the vehicle's center of gravity is maintained at zero, which improves the basic dynamic properties of the vehicle. This approach allows greater maneuverability at low speed by means of counter-phase rear steering and improved stability at high speed through same-phase rear steering. However, the use of counter-phase rear steering to improve maneuverability gives rise to problems in regard to practicality. In addition, continuously controlled four-wheel steering, using counter-phase at low speed and same-phase at high speed, leads to many other problems regarding practicality because of the strong apparent understeer characteristics.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

The Development of Second Generation Ceramic Turbocharger Rotor - Further Improvements in Reliability

1988-02-01
880702
Nissan has developed a second generation ceramic turbocharger rotor which provides greater reliability and higher performance than a conventional ceramic rotor. The new rotor is made of silicon nitride, which has demonstrated sufficient strength in vehicle applications. The bonding technique for joining the ceramic rotor to the metal shaft has been confirmed through experimentation to have sufficient reliability. The second generation rotor is featured by the low stress design and higher dynamic strength, and two factors contribute to its higher reliability. The rotor shape was optimized on the basis of results obtained in two analyses of particle impact resistance and applied combined stress. Test results show that the reliability of the second generation rotor have been substantially improved over those of the conventional rotor now being used on production vehicles.
Technical Paper

Technology for distinctive handling performance of the newly developed Electric Vehicle

2011-05-17
2011-39-7207
Electric Vehicle distinctive techniques in order to enhance the vehicle dynamic performance have been studied and applied to Nissan LEAF. From the viewpoint of performance design parameters, this paper introduces the application items focusing on effectuality for the vehicle behavior by means of the yawing motion and the rolling motion control of its vehicle. As the result, the effects of vehicle performance are shown in experimental data.
Technical Paper

Technologies for Reducing Cold-Start Emissions of V6 ULEVs

1997-02-24
971022
New technologies are needed to reduce cold-start emissions in order to meet the more stringent regulations that will go into effect in Europe (EC2000 or EC2005) and in California (ULEV), especially for larger engines such as 6- and 8-cylinder units. One new technology in this regard is the electrically heated catalyst (EHC). However, the use of EHCs alone is not sufficient to achieve the necessary reduction in emissions. This paper discusses techniques for effectively combining the elements of an EHC system, including the introduction of secondary air into the exhaust, improved control of the air/fuel ratio, and an electric power supply method for EHCs. It is shown that it is more effective to promote exothermic reactions in the exhaust manifold than at the EHC. A suitable method for this purpose is to introduce secondary air into the exhaust near the exhaust valves.
Technical Paper

Technological Trends in Automotive Electronics

1987-11-08
871285
Although automotive electronics was initially applied as a substitute for mechanical parts, this technology has the potential to achieve effective combinations of mechanical functions. A case in point is the successful resolution of fuel consumption and exhaust emission problems by effectively integrating engine control and catalyst technologies. LSI technology has also been incorporated into automotive electronics and established as a fundamental engine control tool. Thanks to LSI technology, particularly the use of microprocessor techniques, conventional machine design problems have been transformed into logical design ones. In the next stage of application, automotive electronics is expected to provide further benefits including a more comfortable ride, an improved human-machine system interface, and an advanced communications system between vehicles and other telecommunications stations.
Technical Paper

Technique for Analyzing Swirl Injectors of Direct-Injection Gasoline Engines

2001-03-05
2001-01-0964
This paper describes the numerical and experimental approaches that were applied to study swirl injectors that are widely used in direct-injection gasoline engines. As the numerical approach, the fuel and air flow inside an injector was first analyzed by using a two-phase flow analysis method [VOF (Volume of Fluid) model]. A time-series analysis was made of the flow though the injector and also of the air cavity that forms at the nozzle and influences fuel atomization. The calculated results made clear the process from initial spray formation to liquid film formation. Spray droplet formation was then analyzed with the synthesized spheroid particle (SSP) method. As the experimental approach, in order to measure the cavity factor that represents the liquid film thickness, nozzle exit flow velocities were measured by particle image velocimetry (PIV).
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Technical Paper

TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings

2015-09-01
2015-01-1872
For better understanding of in-cylinder soot formation processes and governing factors of the number of emitted soot particles of Gasoline Direct Injection (GDI) engines, Transmission Electron Microscope (TEM) analysis of morphology and nanostructure of the soot particles sampled in the exhaust should provide useful information. However, the number concentration of the soot particles emitted from GDI engines is relatively low, which was impeding reliable morphological analysis of the soot particles based on a sufficient number of sampled particles. Therefore, in the present study, a water-cooled thermophoretic sampler for simple and direct sampling of exhaust soot particles was developed and employed, which enabled to obtain a sufficient number of particle samples from the exhaust with Particulate Number (PN) 105 #/cc level for quantitative morphology analysis.
Technical Paper

Swirling Flow Type Jet Pump for Transferring Fuel Inside Saddle-Shaped Fuel Tanks

1989-09-01
891960
This paper presents a swiring flow type jet pump which has been developed and in put into practical use in transferring fuel between sumps in saddle-shaped fuel tanks. The pump is driven by the force of excess fuel returning from the engine. The major structural features of the pump are described along with its performance. Various problems encountered in the process of developing the pump are discussed along with the technologies developed to resolve them. Particular attention is focused on the effects that the geometries if the nozzle, throat and swirling groove have on fuel transfer efficiency. The results of experiments carried out to analyze these correlations are also presented.
Technical Paper

Swirl Controlled 4-Valve Engine Improves in Combustion under Lean Air-Fuel Ratio

1987-11-08
871172
Since a 4-valve engine is less flexible in the design and location of the intake ports as compared with a conventional 2-valve engine, there are some difficulties in strengthening the air motion, including swirl and turbulence, in order to achieve stable combustion under lean mixture operation. This study examined air motion imporvements of 4-valve engine that result in a stable combustion with a lean mixture. These improvements are brought about by the installation of a swirl control valve in each intake port. The results of this study have clarified that the lean stable limit was extended from an air-fuel ratio of 21.5 to 26.3 under a partial load, by optimizing the location and diameter of aperture of the swirl control valve.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
X