Refine Your Search

Topic

Author

Search Results

Technical Paper

The Design and Evaluation of Microphone Arrays for the Visualization of Noise Sources on Moving Vehicles

1999-05-17
1999-01-1742
The present work was directed towards the design of a sideline microphone array specifically adapted to the visualization of automotive noise sources in the 500 Hz to 2000 Hz range. The particular design philosophy followed here involved the minimization of the array redundancy: i.e., the minimization of the number of pairs of microphones that are separated by the same distance in the same directions. The performance of sixty-four element microphone arrays designed according to this principle will be illustrated through the use of simulated motor vehicle passbys. In addition, their performance will be compared with more conventional array designs: e.g., elliptical, and spiral arrays.
Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Technical Paper

Swirl-Spray Interactions in a Diesel Engine

2001-03-05
2001-01-0996
Swirl in Diesel engines is known to be an important parameter that affects the mixing of the fuel jets, heat release, emissions, and overall engine performance. The changes may be brought about through interactions of the swirling flow field with the spray and through modifications of the flow field. The purpose of this paper is to investigate the interaction of the swirl with sprays in a Diesel engine through a computational study. A multi-dimensional model for flows, sprays, and combustion in engines is employed. Results from computations are reported with varying levels of swirl and initial turbulence in two typical Diesel engine geometries. It is shown that there is an optimal level of swirl for each geometry that results from a balance between increased jet surface area and, hence, mixing rates and utilization of air in the chamber.
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Technical Paper

Real-Time On-Board Indirect Light-Off Temperature Estimation as a Detection Technique of Diesel Oxidation Catalyst Effectiveness Level

2013-04-08
2013-01-1517
The latest US emission regulations require dramatic reductions in Nitrogen Oxide (NOx) emissions from vehicular diesel engines. Selective Catalytic Reduction (SCR) is the current technology that achieves NOx reductions of up to 90%. It is typically mounted downstream of the existing after-treatment system, i.e., after the Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF). Accurate prediction of input NO₂:NO ratio is useful for control of SCR urea injection to reduce NOx output and NH₃ slippage downstream of the SCR catalyst. Most oxidation of NO to NO₂ occurs in the DOC since its main function is to oxidize emission constituents. The DOC thus determines the NO₂:NO ratio as feedgas to the SCR catalyst. The prediction of NO₂:NO ratio varies as the catalyst in the DOC ages or deteriorates due to poisoning. Thus, the DOC prediction model has to take into account the correlation of DOC conversion effectiveness and the aging of the catalyst.
Technical Paper

RANS and LES Study of Lift-Off Physics in Reacting Diesel Jets

2014-04-01
2014-01-1118
Accurate modeling of the transient structure of reacting diesel jets is important as transient features like autoignition, flame propagation, and flame stabilization have been shown to correlate with combustion efficiency and pollutant formation. In this work, results from Reynolds-averaged Navier-Stokes (RANS) simulations of flame lift-off in diesel jets are examined to provide insight into the lift-off physics. The large eddy simulation (LES) technique is also used to computationally model a lifted jet flame at conditions representative of those encountered in diesel engines. An unsteady flamelet progress variable (UFPV) model is used as the turbulent combustion model in both RANS simulations and LES. In the model, a look-up table of reaction source terms is generated as a function of mixture fraction Z, stoichiometric scalar dissipation rate Xst, and progress variable Cst by solving the unsteady flamelet equations.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT) Education and Outreach Program

2005-07-11
2005-01-3107
The ALS/NSCORT Education and Outreach provides an avenue to engage and educate higher education students and K-12 educators/students in the center's investigations of the synergistic concepts and principles required for regenerative life-support in extended-duration space exploration. The following K-12 Education programs will be addressed: 1) Key Learning Community Project provides exposure, mentoring and research opportunities for 9-12th grade students at Key Learning Community This program was expanded in 2004 to include an “Explore Mars” 3-day camp experience for 150 Key students. The overall goal of the collaborative project is to motivate students to pursue careers in science, technology, and engineering; 2) Mission to Mars Program introduces 5th-8th grade students to the complex issues involved with living on Mars, stressing the interdisciplinary fundamentals of science, technology and engineering that underlie Advanced Life Support research.
Journal Article

Multi-objective Optimization Tool for Noise Reduction in Axial Piston Machines

2008-10-07
2008-01-2723
Noise generation in axial piston machines can be attributed to two main sources; fluid borne and structure borne. Any attempt towards noise reduction in axial piston machines should focus on simultaneous reduction of these two sources. A multi-parameter multi-objective optimization approach to design valve plates to reduce both sources of noise for pumps which operate in a wide range of operating conditions has been detailed in a previous work (Seeniraj and Ivantysynova, 2008). The focus of this paper is to explain the background and to demonstrate the functionality and usefulness of the methodology for pump design.
Technical Paper

Modeling of Machine Tool Dynamics and Chatter Prediction

1998-06-02
981840
Dynamics of machine tool components play a critical role in the outcome of machining processes. This paper addresses several important issues on machine tool and machining dynamics. It illustrates the dynamic behavior of structural components under operating conditions and presents an improved technique for modeling structural non-linearity. It also describes spindle modeling capability that has been developed to predict dynamic and thermal characteristics of spindle systems. Finally, the paper discusses the impact of non-linear dynamics on machining stability.
Technical Paper

Modeling and Optimization of the Control Strategy for the Hydraulic System of an Articulated Boom Lift

2010-10-05
2010-01-2006
This paper describes the numerical modeling of the hydraulic circuit of a self-moving boom lift. Boom lifts consist of several hydraulic actuators, each of them performs a specific movement. Hydraulic systems for lifting applications must ensure consistent performance no matter what the load and how many users are in operation at the same time. Common solutions comprise a fixed or a variable displacement pump with load-sensing control strategy. Instead, the hydraulic circuit studied in this paper includes a fixed displacement pump and an innovative (patented) proportional valve assembly. Each proportional valve (one for each user) permits a flow regulation for all typical load conditions and movement simultaneously. The study of the hydraulic system required a detailed modeling of some components such as: the overcenter valves, for the control of the assistive loads; the proportional valve, which keeps a constant flow independently of pressure drop across itself.
Technical Paper

Methodology for Metalcasting Process Selection

2003-03-03
2003-01-0431
Today, there are several hundreds of manufacturing processes available to the designer to choose from, and the number is constantly increasing. The ability to choose a manufacturing process for a particular user need set in the early stage of the design process is necessary. In metalcasting alone, there are over forty different processes with different capabilities. A designer can benefit from knowing the manufacturing process alternatives available to him. Inaccurate process selection can lead to financial losses and market share erosion. This paper discusses a methodology for selection of a metalcasting process based on a number of user specified attributes or requirements. A model of user requirements was developed and these requirements were matched with the capabilities of each metalcasting process. The metalcasting process which best meets these needs is suggested.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

2003-03-03
2003-01-0220
In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

In-process Monitoring and Control of Surface Roughness

1998-06-02
981850
This paper presents in-process monitoring and control based on a novel ultrasonic sensing technique. The developed ultrasonic system provides non-contact measurement of surface roughness, which is applicable to wet machining environments. The utility and robustness of the technique are demonstrated through applications to different processes and materials. In-process surface roughness monitoring capability of the system is also shown along with its potential to monitor flank wear conditions. The result of in-process surface roughness control implementation based on the developed technique shows the control scheme is able to maintain consistent surface roughness values regardless of the tool wear state.
Journal Article

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

2021-04-06
2021-01-0303
This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

2021-04-06
2021-01-0348
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
Technical Paper

Equivalent System Mass of Producing Yeast and Flat Breads from Wheat Berries, A Comparison of Mill Type

2004-07-19
2004-01-2525
Wheat is a candidate crop for the Advanced Life Support (ALS) system, and cereal grains and their products will be included on long-term space missions beyond low earth orbit. While the exact supply scenario has yet to be determined, some type of post-processing of these grains must occur if they are shipped as bulk ingredients or grown on site for use in foods. Understanding the requirements for processing grains in space is essential for incorporating the process into the ALS food system. The ESM metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The objective of this study was to compare the impact of grain mill type on the ESM of producing yeast and flat breads. Hard red spring wheat berries were ground using a Brabender Quadrumat Jr. or the Kitchen-Aid grain mill attachment (both are proposed post-harvest technologies for the ALS system) to produce white and whole wheat flour, respectively.
Technical Paper

Equivalent System Mass (ESM) Estimates for Commercially Available, Small-Scale Food Processing Equipment

2004-07-19
2004-01-2526
One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques.
X