Refine Your Search

Topic

Author

Search Results

Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Solids Thermophilic Aerobic Reactor for Solid Waste Management in Advanced Life Support Systems

2004-07-19
2004-01-2467
Solids thermophilic aerobic reactor (STAR) processing of biodegradable solid waste residuals uses high temperature conditions to reduce waste volume, inactivate pathogens, and render products that may enter the recycle system by providing plant substrate, fish food, and mushroom growth medium. The STAR process recovers and enables the reuse of nutrients, water, and carbon. During the time of this study, STAR was operated at a 3% solids loading rate, with an 11-day retention time at a temperature range of 50-55°C. This document presents the following details: a the evolution to date of the STAR reactor b review of reactor operation and analytical methods c a synopsis of the performance results and related discussion, and d a synopsis of future goals relative to this project's associated research roadmap.
Technical Paper

Real-Time On-Board Indirect Light-Off Temperature Estimation as a Detection Technique of Diesel Oxidation Catalyst Effectiveness Level

2013-04-08
2013-01-1517
The latest US emission regulations require dramatic reductions in Nitrogen Oxide (NOx) emissions from vehicular diesel engines. Selective Catalytic Reduction (SCR) is the current technology that achieves NOx reductions of up to 90%. It is typically mounted downstream of the existing after-treatment system, i.e., after the Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF). Accurate prediction of input NO₂:NO ratio is useful for control of SCR urea injection to reduce NOx output and NH₃ slippage downstream of the SCR catalyst. Most oxidation of NO to NO₂ occurs in the DOC since its main function is to oxidize emission constituents. The DOC thus determines the NO₂:NO ratio as feedgas to the SCR catalyst. The prediction of NO₂:NO ratio varies as the catalyst in the DOC ages or deteriorates due to poisoning. Thus, the DOC prediction model has to take into account the correlation of DOC conversion effectiveness and the aging of the catalyst.
Technical Paper

Pump Controlled Steer-by-Wire System

2013-09-24
2013-01-2349
Modern on-road vehicles have been making steady strides when it comes to employing technological advances featuring active safety systems. However, off-highway machines are lagging in this area and are in dire need for modernization. One chassis system that has been receiving much attention in the automotive field is the steering system, where several electric and electrohydraulic steering architectures have been implemented and steer-by-wire technologies are under current research and development activities. On the other hand, off-highway articulated steering vehicles have not adequately evolved to meet the needs of Original Equipment Manufacturers (OEM) as well as their end customers. Present-day hydrostatic steering systems are plagued with poor energy efficiency due to valve throttling losses and are considered passive systems relative to safety, adjustability, and comfort.
Technical Paper

Optimization for Shared-Autonomy in Automotive Swarm Environment

2009-04-20
2009-01-0166
The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a “swarm” concept of operations. The swarm, a collection of vehicles traveling at high speeds and in close proximity, will require management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared-autonomy approach in which the strengths of both human drivers and machines are employed in concert for this management. A fuzzy logic-based control implementation is combined with a genetic algorithm to select the shared-autonomy architecture and sensor capabilities that optimize swarm operations.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT) Education and Outreach Program

2005-07-11
2005-01-3107
The ALS/NSCORT Education and Outreach provides an avenue to engage and educate higher education students and K-12 educators/students in the center's investigations of the synergistic concepts and principles required for regenerative life-support in extended-duration space exploration. The following K-12 Education programs will be addressed: 1) Key Learning Community Project provides exposure, mentoring and research opportunities for 9-12th grade students at Key Learning Community This program was expanded in 2004 to include an “Explore Mars” 3-day camp experience for 150 Key students. The overall goal of the collaborative project is to motivate students to pursue careers in science, technology, and engineering; 2) Mission to Mars Program introduces 5th-8th grade students to the complex issues involved with living on Mars, stressing the interdisciplinary fundamentals of science, technology and engineering that underlie Advanced Life Support research.
Technical Paper

Multi-Objective Bayesian Optimization of Lithium-Ion Battery Cells

2022-03-29
2022-01-0703
In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. A LIB is composed of several unit cells. Therefore, one of the most important factors that determine the performance of a LIB are the characteristics of the unit cell. The design of LIB cells is a challenging problem since it involves the evaluation of expensive black-box functions. These functions lack a closed-form expression and require long-running time simulations or expensive physical experiments for their evaluation. Recently, Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition function that guides the optimization.
Technical Paper

Modeling of Nonlinear Elastomeric Mounts. Part 1: Dynamic Testing and Parameter Identification

2001-03-05
2001-01-0042
A methodology for modeling elastomeric mounts as nonlinear lumped parameter models is discussed. A key feature of this methodology is that it integrates dynamic test results under different conditions into the model. The first step is to model the mount as a linear model that is simple but reproduces accurately results from dynamic tests under small excitations. Frequency Response Functions (FRF) enables systematic calculation of the parameters for the model. Under more realistic excitation, the mount exhibits non-linearity, which is investigated in the next step. For nonlinear structures, a simple and intuitive method is to use time-domain force-displacement (F-x) curves. Experiments to obtain the F-x curves involve controlling the displacement excitation and measuring the induced forces. From the F-x curves, stiffness and damping parameters are obtained with an optimization technique.
Technical Paper

Measuring Particulate Load in a Diesel Particulate Filter

2006-04-03
2006-01-0868
A gravimetric particulate measurement system, which extracts samples isokinetically from raw exhaust, is presented to quantify the particulate mass stored in diesel particulate filters. The purpose of this measurement system is to facilitate the study of wall-flow filter behavior at different particulate load levels. Within this paper, the design considerations for the particulate measurement system are detailed and its operation is described. The accuracy of the measurement is examined through a theoretical error analysis and direct experimental comparison to the differential weight of a diesel particulate filter. Experimental results are also presented to validate the ability of the system to maintain the isokinetic sampling condition.
Technical Paper

Loading Balance and Influent pH in a Solids Thermophilic Aerobic Reactor

2005-07-11
2005-01-2982
The application of biological treatment to solid waste is very promising to facilitate recycling of water, carbon, and nutrients and to reduce the resupply needs of long-term crewed space missions. Degradation of biodegradable solid wastes generated during such a mission is under investigation as part of the NASA Center of Research and Training (NSCORT) at Purdue University. Processing in the solids thermophilic aerobic reactor (STAR) involves the use of high temperature micro-aerobic slurry conditions to degrade solid wastes, enabling the recycling of water, carbon, and nutrients for further downstream uses. Related research presently underway includes technical development and optimization of STAR operations as well as a complementary evaluation of post-STAR processing for gas-stream purification, water recovery by condensate purification, and residuals utilization for both mushroom growth media and nutritional support for fish growth.
Technical Paper

Is There a Need for Human Factors and Error Management in General and Corporate Aviation?

1999-04-20
1999-01-1595
This paper explores the need for human factors and error management within the context of the general and corporate aviation environments. It discusses strategies currently employed in other segments of the aviation industry and how they might be utilized in the corporate and general aviation arenas. It also relates research findings and program successes experienced within the airline industry and makes recommendations as to how a consortial effort by industry organizations might be utilized to employ these strategies in corporate and general aviation operations.
Technical Paper

Human Factors Best Practices

1999-08-10
1999-01-2977
Throughout the industry, organizations struggle with the task of implementing effective human factors programs aimed at reducing maintenance errors. Almost universally, many barriers have frustrated these efforts. In 1998 and 1999, the National Transportation Safety Board sponsored two workshops designed at identifying barriers to the implementation of human factors programs and to explore what was working and what was not working among the many industry efforts. This paper explores the findings of these workshops. In addition, it will report findings of Purdue University studies that reveal a rapid deterioration of even the most successful human factors programs. The research findings disclose several “disconnects” within most organizations which rapidly negate the positive effects of successful human factors and error management training and nullify many proactive human factors programs.
Journal Article

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

2021-04-06
2021-01-0303
This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
Technical Paper

Health Monitoring for Condition-Based Maintenance of a HMMWV using an Instrumented Diagnostic Cleat

2009-04-20
2009-01-0806
Operation & support costs for military weapon systems accounted for approximately 3/5th of the $500B Department of Defense budget in 2006. In an effort to ensure readiness and decrease these costs for ground vehicle fleets, health monitoring technologies are being developed for Condition-Based Maintenance of individual vehicles within a fleet. Dynamics-based health monitoring is used in this work because vibrations are a passive source of response data, which are global functions of the mechanical loading and properties of the vehicle. A common way of detecting faults in mechanical equipment, such as the suspension and chassis of a ground vehicle, is to compare measured operational vibrations to a reference (or healthy) signature to detect anomalies.
Journal Article

Graphene Coating as a Corrosion Protection Barrier for Metallic Terminals in Automotive Environments

2021-04-06
2021-01-0354
Inside an automobile, hundreds of connectors and electrical terminals in various locations experience different corrosive environments. These connectors and electrical terminals need to be corrosion-proof and provide a good electrical contact for a vehicle’s lifetime. Saltwater and sulfuric acid are some of the main corrosion concerns for these electrical terminals. Currently, various thin metallic layers such as gold (Au), silver (Ag), or tin (Sn) are plated with a nickel (Ni) layer on copper alloy (Cu) terminals to ensure reliable electrical conduction during service. Graphene due to its excellent chemical stability can serve as a corrosion protective layer and prevent electrochemical oxidation of metallic terminals. In this work, effects of thin graphene layers grown by plasma-enhanced chemical vapor deposition (PECVD) on Au and Ag terminals and thin-film devices were investigated. Various mechanical, thermal/humidity, and electrical tests were performed.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

2021-04-06
2021-01-0348
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
Technical Paper

Frequency Conversion Controlled Vapor Recovery System by Temperature and Flow Signals: Model Design and Parameters Optimization

2013-09-24
2013-01-2348
Current gasoline-gas vapor recovery system is incomplete, for it cannot adjust the vapor-liquid ratio automatically due to the change of working temperature. To solve this problem, this paper intends to design a new system and optimize its parameters. In this research, variables control method is used for tests while linear regression is used for data processing. This new system moves proportion valve away and adds a DSP control module, a frequency conversion device, and a temperature sensor. With this research, it is clearly reviewed that the vapor-liquid ratio should remains 1.0 from 0 °C to 20 °C as its working temperature, be changed into 1.1 from 20 °C to 25 °C, be changed into 1.2 from 25 °C to 30 °C, and be changed into 1.3 when the working temperature is above 30 °C.
Technical Paper

Free Gas Pulsation of a Helmholtz Resonator Attached to a Thin Muffler Element

1998-02-23
980281
Helmholtz resonator has been used in industry for a long time to reduce the noise from exhaust system in vehicle or machinery. Numerous investigations have been done in the past to study the effect of a Helmholtz resonator connected to a pipeline. A general procedure for the analysis of curved or flat, thin two dimensional gas cavities such as thin compressor or engine manifolds or so-called thin shell type muffler elements, which can efficiently utilize the limited space of hermetically sealed compressors or small engine compartments, has been developed by the authors, as long as the thickness of the cavities is substantially small compared to the shortest wavelength of interest. However, to the authors' knowledge, a Helmholtz resonator attached to a rectangular thin muffler element, which is similar to a refrigeration compressor muffler, has not been analyzed.
X