Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study of Oil Flow Surrounding Piston Rings and Visualization Observation

2008-04-14
2008-01-0795
By observation through a glass window, the effect of side surface sealing ability of piston ring on the increase of oil consumption for light load and at medium engine speed range was confirmed. In each engine stroke, effects of ring motion on oil consumption were predicted by simulation and the flow of oil around piston ring was observed during actual firing engine operation through a visualization window with a test engine. Importance of the side surface sealing ability of piston ring on oil consumption and effect of small width top ring with positive twist for second ring collapse were reconfirmed.
Technical Paper

Effect of Top Rings on Piston Slap Noise

1995-10-01
952236
A recent increase in detergent additives to gasoline has resulted in an increase in the accumulation of deposits inside the engine's combustion chamber (this type of deposit will be hereinafter referred to as “CCD”;Combustion Chamber Deposit). Along with this tendency, authors have observed an engine noise generated during warm up, which may be attributable to the CCD accumulation. It was reported that the engine noise was identified as carbon knocking caused when the piston and cylinder head physically come in contact because of these CCDs(1X2) This paper deals with another noise generated by the CCD trapped between the piston ring and piston ring groove.
Journal Article

An Experimental Study on Relationship between Lubricating Oil Consumption and Cylinder Bore Deformation in Conventional Gasoline Engine

2009-04-20
2009-01-0195
It is well known that lubricating oil consumption (LOC) is much affected by the cylinder bore deformation occurring within internal combustion engines. There are few analytical reports, however, of this relationship within internal combustion engines in operation. This study was aimed at clarifying the relationship between cylinder bore deformation and LOC, using a conventional in-line four-cylinder gasoline engine. The rotary piston method developed by the author et al. was used to measure the cylinder bore deformation of the engine’s cylinder #3 and cylinder #4. In addition, the sulfur tracer method was applied to measure LOC of each cylinder. LOC was also measured by changing ring tension with a view to taking up for discussion how piston ring conforms to cylinder, and how such conformability affects LOC. Their measured results were such that the cylinder bore deformation was small in the low engine load area and large in the high engine load area.
X