Refine Your Search

Topic

Search Results

Technical Paper

Wind-Tunnel and On-Road Wind Noise: Comparison and Replication

2013-04-08
2013-01-1255
A KIA Soul was instrumented to measure the relative velocity (magnitude and yaw angle) at the front of the vehicle and in-cabin sound at a location close to the side glass near the A-pillar vortex impingement. Tests were conducted at a proving ground under a range of conditions from low wind conditions (~3 m/s) to moderate (7-8 m/s) wind speeds. For any given set of atmospheric conditions the velocity and sound data at any given position on the proving ground were noted to be very repeatable, indicating that the local wakes dominated the "turbulent" velocity field. Testing was also conducted in an aeroacoustic wind tunnel in smooth flow and with a number of novel turbulence generating methods. The resulting sounds were analyzed to study the modulation at frequencies likely to result in fluctuation strength type noise.
Technical Paper

Wind-Tunnel Tests of Vehicle Cooling System Performance at High Blockage

2000-03-06
2000-01-0351
Wind tunnels provide a convenient, repeatable method of assessing vehicle engine cooling, yet important draw-backs are the lack of a moving ground and rotating wheels, blockage constraints and, in some tunnels, the inability to simulate ambient temperatures. A series of on-road and wind-tunnel experiments has been conducted to validate a process for evaluating vehicle cooling system performance in a high blockage aerodynamic wind tunnel with a fixed ground simulation. Airflow through the vehicle front air intake was measured via a series of pressure taps and the wind-tunnel velocity was adjusted to match the corresponding pressures found during the road tests. In order to cope with the inability to simulate ambient temperatures, the technique of Specific Dissipation (SD) was used (which has previously been shown to overcome this problem).
Technical Paper

Updating of an Unmanned Aerial Vehicle Finite Element Model using Experimental Data

2015-09-15
2015-01-2460
In this paper the finite element model of an Unmanned Aerial Vehicle is updated by using experimental data coming from a standard ground vibration test in order to improve the numerical-experimental correlation. A sensitivity-based updating methodology that iteratively minimizes a residual vector, defined on the modal parameters (e.g. natural frequencies and mode shapes), is considered to identify the unknown values of the updating parameters. The structure under investigation is the Clarkson University Golden Eagle UAV. An initial numerical model of the structure is obtained by assembling the individual components previously updated which included wings, fuselage, horizontal tail, vertical tails and tail booms. As a result the identification procedure shifts its focus on the joints between UAV elements which could not be modeled accurately in earlier investigations.
Technical Paper

Unsteady Aerodynamics of a 3D Wing Hosting Synthetic Jet Actuators

2015-09-15
2015-01-2455
The implementation of Synthetic Jet Actuators (SJAs) on Unmanned Aerial Vehicles (UAVs) provides a safe test-bed for analysis of improved performance, in the hope of certification of this technology on commercial aircraft in the future. The use of high resolution numerical methods (i.e. CFD) to capture the details of the effects of SJAs on flows and on the hosting lifting surface are computationally expensive and time-consuming, which renders them ineffective for use in real-time flow control implementations. Suitable alternatives include the use of Reduced Order Models (ROMs) to capture the lower resolution overall effects of the jets on the flow and the hosting structure. This research paper analyses the effects of SJAs on aircraft wings using a ROM for the purpose of determining the unsteady aerodynamic forces modified by the presence of the SJAs. The model developed is a 3D unsteady panel code where the jets are represented by source panels.
Technical Paper

Transient Dynamic Analysis of Self-Locking Gears

2015-04-14
2015-01-1132
The self-locking gear has great potential application in controlling the position stability of gearbox, which is a critical requirement in some precision machineries and instruments. This study provides important knowledge about the dynamic performance of self-locking gear pairs. An analytical model of variation ratio of contact length (VRCL) was established. The tooth root stress, bearing force, and axial acceleration of three self-locking gear pairs are investigated by using transient dynamic finite element analysis (FEA). The FEA results presented the influences of VRCL on the meshing performance of self-locking gear pairs. The obtained results provide significant knowledge for predicting the dynamic performance of self-locking gear pairs, optimizing their design parameters, and diagnosing possible design errors in self-locking gear pair design.
Technical Paper

The Unsteady Wind Environment of Road Vehicles, Part Two: Effects on Vehicle Development and Simulation of Turbulence

2007-04-16
2007-01-1237
This paper summarises the effects of turbulence on the aerodynamics of road vehicles, including effects on forces and aero-acoustics. Data are presented showing that a different design of some vehicles may result when turbulent flow is employed. Methods for generating turbulence, focusing on physical testing in full-size wind tunnels, are discussed. The paper is Part Two of a review of turbulence and road vehicles. Part One (Cooper and Watkins, 2007) summarised the sources and nature of the turbulence experienced by surface vehicles.
Technical Paper

The Unsteady Wind Environment of Road Vehicles, Part One: A Review of the On-road Turbulent Wind Environment

2007-04-16
2007-01-1236
This paper is the first of two papers that address the simulation and effects of turbulence on surface vehicle aerodynamics. This, the first paper, focuses on the characteristics of the turbulent flow field encountered by a road vehicle. The natural wind environment is usually unsteady but is almost universally replaced by a smooth flow in both wind tunnel and computational domains. In this paper, the characteristics of turbulence in the relative-velocity co-ordinate system of a moving ground vehicle are reviewed, drawing on work from Wind Engineering experience. Data are provided on typical turbulence levels, probability density functions and velocity spectra to which vehicles are exposed. The focus is on atmospheric turbulence, however the transient flow field from the wakes of other road vehicles and roadside objects are also considered.
Journal Article

The Development of Turbine Volute Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations: Part 3: Exhaust Radial Turbine Volute Systems

2014-04-01
2014-01-0648
Modern exhaust systems contain not only a piping network to transport hot gas from the engine to the atmosphere, but also functional components such as the catalytic converter and turbocharger. The turbocharger is common place in the automotive industry due to their capability to increase the specific power output of reciprocating engines. As the exhaust system is a main heat source for the under body of the vehicle and the turbocharger is located within the engine bay, it is imperative that accurate surface temperatures are achieved. A study by K. Haehndel [1] implemented a 1D fluid stream as a replacement to solving 3D fluid dynamics of the internal exhaust flow. To incorporate the 3D effects of internal fluid flow, augmented Nusselt correlations were used to produce heat transfer coefficients. It was found that the developed correlations for the exhaust system did not adequately represent the heat transfer of the turbocharger.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Technical Paper

Permanent Magnet Starter-Generator for Aircraft Application

2014-09-16
2014-01-2157
This paper describes a high-speed electrical machine for an aircraft starter-generator. A surface mounted permanent magnet machine is designed to have minimal rotor losses and a novel cooling system for the stator. An inner stator sleeve is adopted to allow for a flooded stator whilst minimizing rotor windage losses. Different slot-pole combinations are compared in view of attaining an optimal combination that provides minimum losses whilst satisfying the electromagnetic, mechanical and thermal constraints.
Technical Paper

On The Causes of Image Blurring in External Rear View Mirrors

2004-03-08
2004-01-1309
Effective rear view vision from external mirrors is compromised at high speed due to rotational vibration of the mirror glass. Possible causes of the mirror vibration are reviewed, including road inputs from the vehicle body and a variety of aerodynamic inputs. The latter included vibrations of the entire vehicle body, vibrations of the mirror “shell”, the turbulent flow field due to the A-pillar vortex (and to a lesser extent the approach flow) and base pressure fluctuations. Experiments are described that attempt to understand the relative influence of the causes of vibration, including road and tunnel tests with mirrors instrumented with micro accelerometers. At low frequencies, road inputs predominate, but some occur at such low frequencies that the human eye can track the moving image. At frequencies above about 20Hz the results indicate that at high speeds aerodynamics play a dominant role.
Technical Paper

Nonlinear Slender Beam-Wise Schemes for Structural Behavior of Flexible UAS Wings

2015-09-15
2015-01-2462
The innovative highly flexible wings made of extremely light structures, yet still capable of carrying a considerable amount of non- structural weights, requires significant effort in structural simulations. The complexity involved in such design demands for simplified mathematical tools based on appropriate nonlinear structural schemes combined with reduced order models capable of predicting accurately their aero-structural behaviour. The model presented in this paper is based on a consistent nonlinear beam-wise scheme, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are expanded up to the third order and can be used to explore the effect of static deflection imposed by external trim, the effect of gust loads and the one of nonlinear aerodynamic stall.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Technical Paper

Multi-Sensor Data Fusion Techniques for RPAS Detect, Track and Avoid

2015-09-15
2015-01-2475
Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers.
Journal Article

Modelling and Evaluation of Aircraft Contrails for 4-Dimensional Trajectory Optimisation

2015-09-15
2015-01-2538
Contrails and aircraft-induced cirrus clouds are reputed being the largest components of aviation-induced global warming, even greater than carbon dioxide (CO2) exhaust emissions by aircraft. This article presents a contrail model algorithm specifically developed to be integrated within a multi-objective flight trajectory optimization software framework. The purpose of the algorithm is to supply to the optimizer a measure of the estimated radiative forcing from the contrails generated by the aircraft while flying a specific trajectory. In order to determine the precise measure, a comprehensive model is employed exploiting the Schmidt-Appleman criterion and ice-supersaturation regions. Additional parameters such as the solar zenith angle, contrail lifetime and spread are also considered.
Technical Paper

Low-Cost RPAS Navigation and Guidance System using Square Root Unscented Kalman Filter

2015-09-15
2015-01-2459
Multi-Sensor Data Fusion (MSDF) techniques involving satellite and inertial-based sensors are widely adopted to improve the navigation solution of a number of mission- and safety-critical tasks. Such integrated Navigation and Guidance Systems (NGS) currently do not meet the required level of performance in all flight phases of small Remotely Piloted Aircraft Systems (RPAS). In this paper an innovative Square Root-Unscented Kalman Filter (SR-UKF) based NGS is presented and compared with a conventional UKF governed design. The presented system architectures adopt state-of-the-art information fusion approach based on a number of low-cost sensors including; Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) and Vision Based Navigation (VBN) sensors.
Technical Paper

Investigation of GNSS Integrity Augmentation Synergies with Unmanned Aircraft Sense-and-Avoid Systems

2015-09-15
2015-01-2456
Global Navigation Satellite Systems (GNSS) can support the development of low-cost and high performance navigation and guidance architectures for Unmanned Aircraft Systems (UAS) and, in conjunction with suitable data link technologies, the provision of Automated Dependent Surveillance (ADS) functionalities for cooperative Sense-and-Avoid (SAA). In non-cooperative SAA, the adoption of GNSS can also provide the key positioning and, in some cases, attitude data (using multiple antennas) required for automated collision avoidance. A key limitation of GNSS for both cooperative (ADS) and non-cooperative applications is represented by the achievable levels of integrity. Therefore, an Avionics Based Integrity Augmentation (ABIA) solution is proposed to support the development of an Integrity-Augmented SAA (IAS) architecture suitable for both cooperative and non-cooperative scenarios.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Technical Paper

Development of a Template Safety Case for Unmanned Aircraft Operations Over Populous Areas

2015-09-15
2015-01-2469
One of the primary hazards associated with the operation of Unmanned Aircraft (UA) is the controlled or uncontrolled impact of the UA with terrain or objects on the terrain (e.g., people or structures). National Aviation Authorities (NAAs) have the responsibility of ensuring that the risks associated with this hazard are managed to an acceptable level. The NAA can mandate a range of technical (e.g., design standards) and operational (e.g., restrictions on flight) regulatory requirements. However, work to develop these regulations for UA is ongoing. Underpinning this rule-making process is a safety case showing how the regulatory requirements put in place ensure that the UA operation is acceptably safe for the given application and environment.
Technical Paper

Development of a Small-Scale Aeroacoustic Open Jet, Open Return Wind Tunnel for Cavity Noise and Component Testing

2000-03-06
2000-01-0867
A small-scale aeroacoustic wind tunnel has been designed and built to investigate tonal cavity noise in the frequency range applicable to passenger vehicles; 1 - 16 kHz. The tunnel is required for testing associated with an investigation into tonal cavity noise on passenger-vehicle wing mirrors. It was designed to operate in the low subsonic speed range (60 - 140 km/h) with a nozzle exit cross-sectional area of 0.02 m2 and a 4:1 aspect ratio. The design was intended to achieve a smooth, quiet flow facility. In this paper the design process is summarised and the factors leading to particular design decisions are detailed. An initial evaluation has shown that only minimal changes are required to achieve very smooth, even flow at the nozzle exit at all required test speeds. The acoustic design needs further work as there is a significant amount of flow noise at the nozzle exit between 1 and 13 kHz.
X