Refine Your Search

Topic

Author

Search Results

Technical Paper

“Build Your Hybrid” - A Novel Approach to Test Various Hybrid Powertrain Concepts

2023-04-11
2023-01-0546
Powertrain electrification is becoming increasingly common in the transportation sector to address the challenges of global warming and deteriorating air quality. This paper introduces a novel “Build Your Hybrid” approach to experience and test various hybrid powertrain concepts. This approach is applied to the light commercial vehicles (LCV) segment due to the attractive combination of a Diesel engine and a partly electrified powertrain. For this purpose, a demonstrator vehicle has been set up with a flexible P02 hybrid topology and a prototype Hybrid Control Unit (HCU). Based on user input, the HCU software modifies the control functions and simulation models to emulate different sub-topologies and levels of hybridization in the demonstrator vehicle. Three powertrain concepts are considered for LCVs: HV P2, 48V P2 and 48V P0 hybrid. Dedicated hybrid control strategies are developed to take full advantage of the synergies of the electrical system and reduce CO2 and NOx emissions.
Journal Article

Virtual 48 V Mild Hybridization: Efficient Validation by Engine-in-the-Loop

2018-04-03
2018-01-0410
New 12 V/48 V power net architectures are potential solutions to close the gap between customer needs and legislative requirements. In order to exploit their potential, an increased effort is needed for functional implementation and hardware integration. Shifting of development tasks to earlier phases (frontloading) is a promising solution to streamline the development process and to increase the maturity level at early stages. This study shows the potential of the frontloading of development tasks by implementing a virtual 48 V mild hybridization in an engine-in-the-loop (EiL) setup. Advanced simulation technics like functional mock-up interface- (FMI) based co-simulation are utilized for the seamless integration of the real-time (RT) simulation models and allow a modular simulation framework as well as a decrease in development time.
Technical Paper

Traffic Situation Assessment and Intervention Strategy of a Collision Avoidance System based on Galileo Satellite Positioning

2012-04-16
2012-01-0280
Nowadays, collision avoidance systems (CAS) are an intensive research topic since the majority of all traffic accidents are collisions that are caused due to inattention or unadjusted driving behavior of the driver. Up to date prototypic CAS are based on on-board environmental sensors, such as camera or radar systems, that scan the vehicle's surrounding environment in order to assess the situation's hazardousness. The functionality of the used sensors under varying environmental conditions and the limited sensor covering area require an enormous effort to ensure a reliable detection of obstacles, and thus limit the application of the systems. In order to expand the operating field of such systems, a Galileo-based CAS will be developed within the project ‘Galileo above’ (application centre for ground based traffic).
Technical Paper

The Potential of Data-Driven Engineering Models: An Analysis Across Domains in the Automotive Development Process

2023-04-11
2023-01-0087
Modern automotive development evolves beyond artificial intelligence for highly automated driving, and toward an interconnected manifold of data-driven development processes. Widely used analytical system modelling struggles with rising system complexity, invoking approaches through data-driven system models. We consider these as key enablers for further improvements in accuracy and development efficiency. However, literature and industry have yet to thoroughly discuss the relevance and methods along the vehicle development cycle. We emphasize the importance of data-driven system models in their distinct types and applications along the developing process, from pre-development to fleet operation. Data-driven models have proven in other works to be fast approximators, of high accuracy and adaptive, in contrast to physics-based analytical approaches across domains.
Technical Paper

Relevance of Exhaust Aftertreatment System Degradation for EU7 Gasoline Engine Applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km. With the introduction of Euro 7 it is expected that the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. In order to quantify the emission impact of exhaust system degradation, an Euro 7 exhaust aftertreatment system is aged by different accelerated approaches: application of the Standard Bench Cycle, the ZDAKW cycle, a novel ash loading method and borderline aging. The results depict the impact of oil ash on the oxygen storage capacity. For tailpipe emissions, the maximum peak temperatures are the dominant aging factor. The cold start performance is effected by both, thermal degradation and ash accumulation. An evaluation of this emission increase requires appropriate benchmarks.
Technical Paper

Real-time Multi-Layer Predictive Energy Management for a Plug-in Hybrid Vehicle based on Horizon and Navigation Data

2024-04-09
2024-01-2773
Plug-In Hybrid Vehicles (PHEV) have been of significant importance recently to comply with future CO2 and pollutant emissions limit. However, performance of these vehicles is closely related to the energy management strategy (EMS) used to ensure minimum fuel consumption and maximize electric driving range. While conventional EMS concepts are developed to operate in wide range of scenarios, this approach could potentially compromise the fuel consumption benefit due to the omission of route and traffic information. With the advancements in the availability of real-time traffic, navigation and driving route information, the EMS can be further optimized to extract the complete potential of a PHEV. In this context, this paper presents application of predictive energy management (PEM) functionalities combined with information such as live traffic data to reduce the fuel consumption for a P1/P3 configuration PHEV vehicle.
Technical Paper

Optimised Neat Ethanol Engine with Stratified Combustion at Part-load; Particle Emissions, Efficiency and Performance

2013-04-08
2013-01-0254
A regular flex-fuel engine can operate on any blend of fuel between pure gasoline and E85. Flex-fuel engines have relatively low efficiency on E85 because the hardware is optimized for gasoline. If instead the engine is optimized for neat ethanol, the efficiency may be much higher, as demonstrated in this paper. The studied two-liter engine was modified with a much higher compression ratio than suitable for gasoline, two-stage turbocharging and direct injection with piezo-actuated outwards-opening injectors, a stratified combustion system and custom in-house control system. The research engine exhibited a wide-open throttle performance similar to that of a naturally aspirated v8, while offering a part-load efficiency comparable to a state-of-the-art two-liter naturally aspirated engine. NOx will be handled by a lean NOx trap. Combustion characteristics were compared between gasoline and neat ethanol.
Journal Article

Optical Investigation of Combusting Split-Injection Diesel Sprays Under Quiescent Conditions

2013-09-08
2013-24-0034
Multiple-injection strategies are widely used in DI diesel engines. However, the interaction of the injection pulses is not yet fully understood. In this work, a split injection into a combustion vessel is studied by multiple optical imaging diagnostics. The vessel provides quiescent high-temperature, high-pressure ambient conditions. A common-rail injector which is equipped with a three-hole nozzle is used. The spray is visualized by Mie scattering. First and second stage of ignition are probed by formaldehyde laser-induced fluorescence (LIF) and OH* chemiluminescence imaging, respectively. In addition formation of soot is characterized by both laser-induced incandescence (LII) and natural luminosity imaging, showing that low-sooting conditions are established. These qualitative diagnostics yield ensemble-averaged, two-dimensional, time-resolved distributions of the corresponding quantities.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

Objectified Drivability Evaluation and Classification of Passenger Vehicles in Automated Longitudinal Vehicle Drive Maneuvers with Engine Load Changes

2019-04-02
2019-01-1286
To achieve global market and brand specific drivability characteristics as unique selling proposition for the increasing number of passenger car derivatives, an objectified evaluation approach for the drivability capabilities of the various cars is required. Thereto, it is necessary to evaluate the influence of different engine concepts in various complex and interlinked powertrain topologies during engine load change maneuvers based on physical criteria. Such an objectification approach enables frontloading of drivability related engineering tasks by the execution of drivability development and calibration work within vehicle subcomponent-specific closed-loop real-time co-simulation environments in early phases of a vehicle development program. So far, drivability functionalities could be developed and calibrated only towards the end of a vehicle development program, when test vehicles with a sufficient level of product maturity became available.
Technical Paper

Nonlinear Identification Modeling for PCCI Engine Emissions Prediction Using Unsupervised Learning and Neural Networks

2020-04-14
2020-01-0558
Premixed charged compression ignition (PCCI) is an advanced combustion strategy, which has the potential to achieve ultra-low nitrogen oxide and soot emissions at high thermal efficiencies. PCCI combustion is characterized by a complex nonlinear chemical-physical process, which indicates that a physical description involves significant development times and also high computation cost. This paper presents a method to use cylinder pressure data and engine operations parameters for prediction of PCCI engine emissions by unsupervised learning and nonlinear identification techniques. The proposed method first uses principal component analysis (PCA) to reduce the dimension of the cylinder-pressure data. Based on the PCA analysis, a multi-input multi-out model was developed for nitrogen oxide and soot emission prediction by multi-layer perceptron (MLP) neural network.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Multi-Domain Modelling of 3 Phase Voltage Source Converters in Modelica Language

2016-09-20
2016-01-2029
This paper will present a multi-domain (electrical and thermal) model of a three phase voltage source converter and its implementation in Modelica language. An averaged model is utilised for the electrical domain, and a power balance method is used for linking the DC and AC sides. The thermal domain focuses in deriving the converter losses by deriving the analytical equations of the space vector modulation to derive a function for the duty cycle of each converter leg. With this, the conduction and switching losses are calculated for the individual switches and diodes, without having to model their actual switching behaviour. The model is very fast to simulate, as no switching events are needed, and allows obtaining the simulation of the electrical and thermal behaviour in the same simulation package..
Technical Paper

Model-in-the-Loop Testing of SOC and SOH Estimation Algorithms in Battery Management Systems

2017-01-10
2017-26-0094
With the increasing application of the lithium ion battery technology in automotive industry, development processes and validation methods for the battery management system (BMS) have drawn more and more attentions. One fundamental function of the BMS is to continuously estimate the battery’s state-of-charge (SOC) and state-of-health (SOH) to guarantee a safe and efficient operation of the battery system. For SOC as well as SOH estimations of a BMS, there are certain non-ideal situations in a real vehicle environment such as measurement inaccuracies, variation of cell characteristics over time, etc. which will influence the outcome of battery state estimation in a negative way. Quantifying such influence factors demands extensive measurements. Therefore, we have developed a model-in-the-loop (MIL) environment which is able to simulate the operating conditions that a BMS will encounter in a vehicle.
Technical Paper

Method for Analytical Calculation of Harmonic Content of Auto-Transformer Rectifier Units

2016-09-20
2016-01-2059
Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
Technical Paper

Lightweight Automobiles ALLIANCE Project: First Results of Environmental and Economic Assessment from a Life-Cycle Perspective

2018-05-30
2018-37-0027
In the last years the research activities in the field of lightweighting have been advancing rapidly. The introduction of innovative materials and manufacturing technologies has allowed significant weight reduction. Despite this, novel technologies and materials have not reached a wide distribution. The reasons for this are mainly high production costs and environmental impacts of manufacturing that do not compensate benefits during operation. The paper deals with the AffordabLe LIghtweight Automobiles AlliaNCE (ALLIANCE) project which has the goal of developing novel advanced automotive materials and production technologies, aiming at an average 25% weight reduction over 100 k units/year, at costs of <3 €/kg. The article is focussed on Work Package 1 (WP1) of the project, aimed at estimating the full attributes of innovative design solutions by assessing costs, energy demand and GWP over the entire vehicle Life Cycle (LC).
Technical Paper

Influence of Vehicle Operators and Fuel Grades on Particulate Emissions of an SI Engine in Dynamic Cycles

2018-04-03
2018-01-0350
With the implementation of the “Worldwide harmonized Light duty Test Procedure” (WLTP) and the highly dynamic “Real Driving Emissions” (RDE) tests in Europe, different engineering methodologies from virtual calibration approaches to Engine-in-the-loop (EiL) methods have to be considered to define and calibrate efficient exhaust gas aftertreatment technologies without the availability of prototype vehicles in early project phases. Since different types of testing facilities can be used, the effects of test benches as well as real and virtual vehicle operators have to be determined. Moreover, in order to effectively reduce harmful emissions, the reproducibility of test cycles is essential for an accurate and efficient application of exhaust gas aftertreatment systems and the calibration of internal combustion engines.
Technical Paper

In-Use Compliance Opportunity for Diesel Powertrains

2018-04-03
2018-01-0877
In-use compliance under LEV III emission standards, GHG, and fuel economy targets beyond 2025 poses a great opportunity for all ICE-based propulsion systems, especially for light-duty diesel powertrain and aftertreatment enhancement. Though diesel powertrains feature excellent fuel-efficiency, robust and complete emissions controls covering any possible operational profiles and duty cycles has always been a challenge. Significant dependency on aftertreatment calibration and configuration has become a norm. With the onset of hybridization and downsizing, small steps of improvement in system stability have shown a promising avenue for enhancing fuel economy while continuously improving emissions robustness. In this paper, a study of current key technologies and associated emissions robustness will be discussed followed by engine and aftertreatment performance target derivations for LEV III compliant powertrains.
Journal Article

Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements

2018-04-03
2018-01-0869
The use of state-of-the-art model-based calibration tools generate only limited benefits for seamless validation in powertrain calibration due to the often neglected system-level simulation of a closed-loop vehicle environment. This study presents a Hardware-in-the-Loop (HiL)-based virtual calibration approach to establish an accurate virtual calibration platform using physical plant models. It is based on a customisable real-time HiL simulation environment. The use of physical models to predict the behaviour of a complete powertrain makes the HiL test bench particularly suited for Engine Control Unit (ECU) calibration. With the virtual test rig approach, the calibration for the critical extended driving and ambient conditions of the new Real Driving Emissions (RDE) requirements can efficiently be optimised. This technique offers a clear advantage in terms of reducing calibration time and costs.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
X