Refine Your Search

Topic

Author

Search Results

Technical Paper

Wall Permeability Estimation in Automotive Particulate Filters

2023-08-28
2023-24-0110
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important.
Technical Paper

Validation of Eulerian-Lagrangian Spray Atomization Modeling against Gasoline Fuel

2021-02-24
2021-01-5027
Combustion in any engine starts with the injection of fuel into the combustion chamber. Atomization of fuel and its mixing plays a vital role in determining the suitable air-fuel (A/F) ratio. Appropriate A/F ratio determines the amount of energy release and pollutant formation for standard engines. Thus an accurate prediction of these processes is required to perform reliable combustion and pollutant formation simulations. In this study, the Eulerian-Lagrangian Spray Atomization (ELSA) model is implemented as a Computational Fluid Dynamics (CFD) tool for the prediction of spray behavior. Past studies performed on diesel fuel suggest good agreement between experiment and simulation indicating the model’s capability. The study aims to validate the ELSA model for gasoline fuel against the test results obtained from Renault and against the pure Lagrangian spray model. The simulations have been performed using CONVERGE CFD v2.4.18.
Journal Article

Understanding of the Internal Crack Phenomenon inside Diesel Particulate Filter during Regeneration Part 1: Modeling and Experiments

2010-05-05
2010-01-1555
This study deals with a coupled experimental and modeling approach of Diesel Particulate Filter cracking. A coupled model (heat transfer, mass transfer, chemical reactions) is used to predict the temperature field inside the filter during the regeneration steps. This model consists of assembled 1D models and is calibrated using a set of laboratory bench tests. In this set of experiments, laboratory scale filters are tested in different conditions (variation of the oxygen rate and gas flow) and axial/radial thermal gradient are recorded with the use of thermocouples. This model is used to build a second set of laboratory bench tests, which is dedicated to the understanding of the phenomena of Diesel Particulate Filter cracking.
Technical Paper

The Impact of Fuel Sulfur Level on FTP Emissions - Effect of PGM Catalyst Type

1997-02-24
970737
With the advent of stricter vehicle emission standards, the improvement of three way catalyst performance and durability remains a pressing issue. A critical consideration in catalyst design is the potential for variations in fuel sulfur levels to have a significant impact on the ability to reach TLEV, LEV, and ULEV emission levels. As a result, a better understanding of the role of PGM composition in the interplay between thermal durability and sulfur tolerance is required. Three way catalysts representative of standard Pd-only, Pd/Rh and Pt/Rh formulations were studied over a variety of aging and evaluation conditions. The parameters investigated included aging temperature, air fuel ratio and sulfur level. Evaluations were performed on a 1994 TLEV vehicle using different sulfur level fuels. The effect of PGM loading was also included within the study.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Repeatability of Fine Particle Measurement of Diesel and Gasoline Vehicles Exhaust Gas

2004-06-08
2004-01-1983
Four Diesel vehicles and two gasoline ones are used to determine the repeatability of the particle number and size measurements. Two analytical techniques are used: Scanning Mobility Particle Sizer (SMPS) and Electrical Low Pressure Impactor (ELPI). The influence of technology (Euro2 and Euro3, Diesel and gasoline vehicles, Diesel Particulate Filter (DPF), Gasoline Direct Injection (GDI)) and speed on the particle number and size is presented in the case of steady speeds and the European Driving Cycle (EDC). The repeatability of these measurements is determined at the entire particle distribution. The global 1.96*Standard Deviation (SD) of the median diameter, determined by SMPS, is 8 nm. The median diameter is difficult to be determined in several cases due to the flat profiles of the emitted particles. The global 1.96*Relative Standard Deviation (RSD) of the particle number presents a U-like curve, with a minimum value (55-57%) at about 100 nm.
Technical Paper

Real World Study of Diesel Particulate Filter Ash Accumulation in Heavy-Duty Diesel Trucks

2006-10-16
2006-01-3257
In April 2003, a small field study was initiated to evaluate the effect of lube oil formulations on ash accumulation in heavy-duty diesel DPFs. Nine (9) Fuel Delivery Trucks were retrofitted with passive diesel particulate filters and fueled with ultra low sulfur diesel which contains less than 15 ppm sulfur. Each vehicle operated in the field for 18 months or approximately 160,000 miles (241,401 km) using one of three lube oil formulations. Ash accumulation was determined for each vehicle and compared between the three differing lube oil formulations. Ash analyses, used lube oil analysis and filter substrate evaluations were performed to provide a complete picture of DPF operations. The evaluation also examined some of the key parameters that allows for the successful implementation of the passive DPF in this heavy-duty application.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Technical Paper

Performance of Different Cell Structure Converters A Total Systems Perspective

1998-10-19
982634
The objective of this effort was to develop an understanding of how different converter substrate cell structures impact tailpipe emissions and pressure drop from a total systems perspective. The cell structures studied were the following: The catalyst technologies utilized were a new technology palladium only catalyst in combination with a palladium/rhodium catalyst. A 4.0-liter, 1997 Jeep Cherokee with a modified calibration was chosen as the test platform for performing the FTP test. The experimental design focused on quantifying emissions performance as a function of converter volume for the different cell structures. The results from this study demonstrate that the 93 square cell/cm2 structure has superior performance versus the 62 square cell/cm2 structure and the 46 triangle cell/cm2 structure when the converter volumes were relatively small. However, as converter volume increases the emissions differences diminish.
Technical Paper

Optimisation of Precious Metal Loadings in Automotive Catalysts Using Response Surface Methodology

1996-10-01
961907
The effect of changing catalyst precious metal ratios and loadings on close coupled catalytic converter efficiencies has been studied. The three precious metals were platinum, palladium and rhodium. The specific matrix used for the development of response surface models is a central composite design and provides the capability of visually optimising the precious metal loadings. Catalysts were evaluated using perturbed scans. lightoff curves from the dynamometer aged, and vehicle emission tests. These scans show percent conversion efficiencies of the three legislated gases; HC, CO and NOx, over a range of Air Fuel Ratios (λ). Whilst lean and rich lightoff curves provide indications of conversion efficiencies at varying temperatures. Prior to testing the catalysts were aged, using an accelerated dynamometer ageing process, to 80K simulated kilometres. The catalysts were then fitted to a vehicle and chassis roll emission tests conducted.
Journal Article

New Methodology for Transient Engine Rig Experiments for Efficient Parameter Tuning

2013-12-20
2013-01-9043
When performing catalyst modeling and parameter tuning it is desirable that the experimental data contain both transient and stationary points and can be generated over a short period of time. Here a method of creating such concentration transients for a full scale engine rig system is presented. The paper describes a valuable approach for changing the composition of engine exhaust gas going to a DOC (or potentially any other device) by conditioning the exhaust gas with an additional upstream DOC and/or SCR. By controlling the urea injection and the DOC bypass a wide range of exhaust compositions, not possible by only controlling the engine, could be achieved. This will improve the possibilities for parameter estimation for the modeling of the DOC.
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

2004-03-08
2004-01-0079
A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
Technical Paper

Investigations into NOx Aftertreatment with Urea SCR for Light-Duty Diesel Vehicles

2001-09-24
2001-01-3624
Future US emissions limits are likely to mean a sophisticated nitrogen oxide (NOx) reduction technique is required for all vehicles with a diesel engine, which is likely to be either NOx trap or selective catalytic reduction (SCR) technology. To investigate the potential of SCR for NOx reduction on a light duty vehicle, a current model vehicle (EUII M1 calibration), of inertia weight 1810 kg, was equipped with an urea-based SCR injection system and non-vanadium, non-zeolitic SCR catalysts. To deal with carbon monoxide (CO), hydrocarbon (HC) and volatile organic fraction (VOF), a diesel oxidation catalyst was also incorporated into the system for most tests. Investigations into the effect of placing the oxidation catalyst at different positions in the system, changing the volume of the SCR catalysts, increasing system temperature through road load changes, varying the SCR catalyst composition, and changing the urea injection calibration are discussed.
Technical Paper

Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vanadia-SCRF®

2018-04-03
2018-01-0962
The influence of SCR (selective catalytic reduction) activity on soot regeneration was investigated using engine test measurements with and without urea dosing on a vanadia-SCRF®1, also known as a vanadia SCR coated diesel particulate filter (V.SCR-DPF). The extent and rate of passive soot regeneration is significantly reduced in the presence of SCR activity especially at high temperatures (>250 °C). The reduction in soot regeneration is because some of the NO2, which would otherwise react with the soot, is consumed by SCR reactions and consequently the rate of soot regeneration is lower when urea is dosed. The converse effects of soot oxidation on SCR activity were studied separately by analysing steady-state light-off engine measurements with different initial soot loadings on the V.SCR-DPF. The measurements show an increase in NOX conversion with increasing soot loading.
Technical Paper

Geometric Description of the Soot Cake in a One-Dimensional Model of an Octo-Square Asymmetric Particulate Filter

2019-04-02
2019-01-0991
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater ash capacity. Surprisingly, very few models for asymmetric PFs have been published. This paper considers how to model the soot cake in octo-square asymmetric PFs. Some previous studies have neglected the octahedral shape of the inlet channel and instead assumed that the inlet channels were square. As the correct approach for modelling the soot cake is not obvious, three options are considered. The calculation of soot-loaded channel perimeter and hydraulic diameter (which are important for heat and mass transfer), soot thickness and backpressure as a function of soot loading are given for each geometry. In option 1, the shape of the soot-loaded channel is assumed to be geometrically similar to the soot-free channel.
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

2004-10-25
2004-01-2959
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

Experimental Analysis of the Influence of Exhaust Manifold Junction Geometry on its Fluid-Dynamic Behavior

2000-03-06
2000-01-0914
The purpose of this paper is to present the results of a study on the exhaust junctions geometry. Twelve three-branch junctions of different geometry have been tested on a single cylinder engine. The parameters studied have been exhaust junction outlet-to-inlet diameter ratio, length, angle between inlet branches and the existence of a reed separating inlet branches. An analysis of the pressure waves amplitude (incident, reflected and transmitted) obtained from instantaneous pressure measurements in some locations around the junction has been carried out. The analysis of results shows that junction length has a low influence on its behavior. The ratio between inlet and outlet branches diameters increases both reflection and directionality (avoiding pressure wave transmission to the adjacent branch). The existence of a reed separating the inlet flows may increase directionality with moderate pressure losses if the throat area is not reduced.
X