Refine Your Search

Topic

Search Results

Technical Paper

Weibull Renewal Analysis

1964-01-01
640624
Renewal theory concerns itself with the replacement of randomly failing parts. In the simplest case we have a one component system which is kept running continuously by replacing a failed component at the instant of failure with an identical “new” component. The random variable N(t) = the number of failures (or replacements) to time t is then of interest in many types of reliability analysis. In this paper the distribution of N(t) is considered when the underlying failure law is a Weibull distribution. Tables of the mean and standard deviation of N(t) for various values of the Weibull slope parameter are presented. Applications to warranty and spare parts analyses are also noted.
Technical Paper

Vehicle Evaluation of Synthetic and Conventional Engine Oils

1975-02-01
750827
A five-vehicle, 64 000-km test with 7.45 litre V-8 engines was conducted to determine if synthetic engine oils provided performance sufficiently superior to that of conventional engine oils to permit longer oil change intervals. The results show better performance in two areas of deposit control; inferior performance with respect to wear protection; and essentially equivalent performance in the areas of fuel and oil economies. Based on these data, it was concluded that synthetic engine oils do not provide the necessary performance required to safely recommend their use for extended oil change intervals. In addition, a cost analysis shows that the use of synthetic engine oils, even at a change interval of 32 000 km, will essentially double the customers' cost compared with conventional engine oils at GM's current 12 000-km change interval.
Technical Paper

Using Interactive Graphics for the Preparation and Management of Finite Element Data

1974-02-01
740344
Interactive graphics is an aid which eliminates the data management problems that arise when manually preparing finite element models. Line and surface data representations of sheet metal automotive stampings are displayed on a cathode ray tube (CRT), and these data are then used for building finite element models. Elements are built by creating node points with the light pen or by using automatic mesh generating techniques. By using the interactive capability, the user immediately sees the results of his modeling decisions and can make changes in his model as a result of viewing his work. The interactive graphics system allows the user to define his elements, load cases, boundary conditions, and freedom sets without worrying about the grid point or element numbers. All information is communicated through the use of either the light pen or the keyboard. As information is supplied about the model, it is stored in a data base for review and possible change.
Technical Paper

The Turbine Interstage Diffuser

1971-02-01
710553
The incentive for use of an interstage diffuser in a free-shaft gas turbine engine is briefly examined and some pertinent published background data reviewed. Tests of two annular diffusers behind an upstream turbine show the deleterious effects of turbine exit flow nonuniformity on diffuser behavior. The flow acceleration provided by the area contraction of a power turbine nozzle located at the diffuser exit substantially improves the nature of the flow previously found to exist at the diffuser exit in the absence of the nozzle.
Technical Paper

The Relationship of Low-Temperature Rheology to Engine Oil Pumpability

1973-02-01
730478
An analysis of oil pumpability reveals that engine oil pumping failures may occur because either the oil cannot flow under its own head to the oil screen inlet, or the oil is too viscous to flow through the screen and inlet tube fast enough to satisfy pump demands. To determine which factor is controlling, the behavior of commercial, multigraded oils was observed visually at temperatures from -40 to 0°F (-40 to - 17.8°C) in a laboratory oil pumpability test apparatus. Test results revealed that pumping failures occur by the first alternative: a hole is formed in the oil, and the surrounding oil is unable to flow into the hole fast enough to satisfy the pump. Of 14 oils tested, 7 failed to be pumped because of air binding or cavitation which developed in this manner. A model, which explains these failures in terms of yield point considerations and the low shear apparent viscosity of the oils, is proposed.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

The GMR Sealometer A New Machine for Oil Seal Evaluation

1966-02-01
660381
The Sealometer is used for evaluating the performance of lip type oil seals and provides a dimensionless number derived from measuring the increase in temperature of a test shaft operating in a lip seal for a given time interval. With the Sealometer it is possible to study parameters that affect seal performance. As a quality control instrument, the machine provides accurate data for design. Sealometer evaluation offers a quick method of determining the life expectancy of a particular design for a particular application and eliminates the need for long life test programs.
Technical Paper

Seal Testing to establish quality control specifications Can Reduce “LEAKERS”

1960-01-01
600047
THIS REPORT deals with the major parameters of a seal application which affect its efficiency and life, as determined by controlled laboratory testing in CM Research Laboratories.* A. Shaft 1. Surface Roughness 2. Machining Lead B. Assembly C. Seal 1. Seal Diameter Control Trim Interference Spring Rate 2. Seal Lip Pressure Trim Interference Spring Rate Rubber Hardness Eccentricity 3. Seal Eccentricity Mold Register Assembly Trim
Technical Paper

Projected Lubricant Requirements of Engines Operating with Lead-Free Gasoline

1971-02-01
710585
Future low emissions engines will burn unleaded gasoline. Compared with engines of 1970, future engines will have lower concentrations of NOx in the blowby gases, and lower blowby flow-rates; however, oil temperatures will probably be unchanged. The consequences of these conditions for engines using high quality (SE) oils at current drain intervals are: virtual elimination of rust, reduction of sludge, no effect on wear and oil thickening, and possible worsening of varnish. Therefore, extension of the drain interval with SE engine oils in the future may be possible, but final decisions will depend on the findings of research in the areas of engine wear and varnish, and oil thickening.
Technical Paper

Numerically Controlled Milling for Making Experimental Turbomachinery

1967-02-01
670096
Utilization of numerically controlled milling has been found particularly attractive in producing, in limited quantities, the three-dimensional curved surfaces characteristic of turbomachinery. In experimental and developmental programs its use can result in decreased fabrication cost, reduced lead time, and improved dimensional accuracy. Following a review of the general classifications of numerically controlled milling machines available for manufacture of such parts, illustrations are given of some of the procedures and techniques employed in their use. A variety of parts made using numerical control serve as examples.
Technical Paper

Mechanical Necks with Humanlike Responses

1972-02-01
720959
A viscoelastic neck structure that responds to impact environments in a manner similar to the human neck is described. The neck structure consists of four ball-jointed segments and one pin-connected “nodding” segment with viscoelastic resistive elements inserted between segments that provide bending resistance as well as the required energy dissipation. Primary emphasis was placed on developing appropriate flexion and extension responses with secondary emphasis placed on axial, lateral, and rotational characteristics. The methods used to design the resistance elements for the neck structure are discussed. Three variations of the resistive elements have been developed that meet the response characteristics based on the data of Mertz and Patrick. However, no single resistive element has satisfied the flexion and extension characteristics simultaneously, but such an element appears to be feasible.
Technical Paper

Measurement of Air Distribution in a Multicylinder Engine by Means of a Mass Flow Probe

1973-02-01
730494
To lower emissions from a multicylinder engine, the air-fuel ratio must be optimized in all cylinders. If uniform fuel distribution is achieved, then the cylinder-to-cylinder air distribution is of particular interest. A probe system has been developed to measure mass flow rates to individual cylinders during operation of a complete engine. Fast response measurements of pressure, temperature, and flow velocity are made in the intake port near the valve during the intake portion of the cycle. High-speed collection of the large volume of data was accomplished through on-line use of an IBM 1800 computer. A V8 455 CID (7457 cm3) engine with stock intake and single exhaust system was used in the initial application of the mass flow probe. Measurements of 30-40 individual cycles were combined to calculate the mean volumetric efficiency for each cylinder.
Technical Paper

Lubricant Viscosity Effects on Passenger Car Fuel Economy

1975-02-01
750675
As part of General Motors effort to improve fuel economy, the effects of engine and power train lubricant viscosities were investigated in passenger car tests using either high- or low- viscosity lubricants in the engine, automatic transmission, and rear axle. Fuel economy was determined in both constant speed and various driving cycle tests with the car fully warmed-up. In addition, fuel economy was determined in cold-start driving cycle tests. Using low-viscosity lubricants instead of high-viscosity lubricants improved warmed-up fuel economy by as much as 5%, depending upon the differences in lubricant viscosity and type of driving. Cold-start fuel economy with low-viscosity lubricants was 5% greater than that with high-viscosity lubricants. With such improvements, it is concluded that significant customer fuel economy gains can be obtained by using the lowest viscosity engine and power train lubricants recommended for service.
Technical Paper

Initial Oxidation Activity of Noble Metal Automotive Exhaust Catalysts

1973-02-01
730570
The use of relatively small catalytic converters containing alumina-supported platinum (Pt) and palladium (Pd) catalysts to control exhaust emissions of hydrocarbons (HC) and carbon monoxide (CO) was investigated in full-scale vehicle tests. Catalytic converters containing 70-80in3 of fresh catalyst were installed at two converter locations on the vehicle. Carburetion was richer than stoichiometric, with air-fuel ratios (A/F) comparable to those proposed for dual-catalyst systems containing an NOx reduction catalyst. The vehicle was equipped with exhaust manifold air injection. Homogeneous thermal reaction in the exhaust manifolds played a significant role in the overall control of HC and CO. Four Pt catalysts, three Pd catalysts, and one Pt-Pd catalyst were prepared and evaluated. Total metal loadings were varied 0.01-0.07 troy oz. Hydrocarbon conversion efficiencies varied 62-82%, measured over the 1975 cold-hot start weighted Federal Test Procedure.
Technical Paper

Impact Tolerance and Response of the Human Thorax

1971-02-01
710851
At the 1970 SAE International Automobile Safety Conference, the first experimental chest impact results from a new, continuing biomechanics research program were presented and compared with earlier studies performed elsewhere by one of the authors using a different technique. In this paper, additional work from the current program is documented. The general objective remains unchanged: To provide improved quantification of injury tolerance and thoracic mechanical response (force-time, deflection-time, and force-deflection relationships) for blunt sternal impact to the human cadaver. Fourteen additional unembalmed specimens of both sexes (ranging in age from 19-81 years, in weight from 117-180 lb, and in stature from 5 ft 1-1/2 in to 6 ft) have been exposed to midsternal, blunt impacts using a horizontal, elastic-cord propelled striker mass. Impact velocities were higher than those of the previous work, ranging from 14-32 mph.
Technical Paper

Hydrodynamic Sealing with Radial Lip Seals

1966-02-01
660379
Conventional radial lip oil seals can be made more effective by utilizing helical grooving beneath the contact lip surface. Miniature hydrodynamic pumps so formed aid the radial lip seal in containing the oil by generating fluid forces opposite in direction to the leakage flow forces. This seal-shaft combination has been termed the Hydroseal. Four factorial experiments were conducted to evaluate the effect of helix angle, groove depth, groove width, and number of grooves on sealing performance. The criterion used as a basis for selecting the optimum design were leakage, wear, hardening of the sealing surface, and pumping capacity. These data indicated that the best hydroseal design was one with three grooves, 0.0003 in. deep, 0.014 in. wide, having a helix angle of 45 deg.
Technical Paper

GMR Stirling Thermal Engine part of the Stirling engine story-1960 chapter

1960-01-01
600068
THIS PAPER discusses the Stirling thermal enging from four points of view: 1. The ideal, thermodynamic point of view, showing the inherent potentialities of the ideal Stirling cycle in comparison to the basic cycles of other engines. 2. The physical engine and its method of operation with respect to the ideal cycle and the limitations of practical mechanics. 3. Performance data from the first modern Stirling engines ever operated in the United States, evaluating the relationship between the new engine and other more familiar engines of similar sizes. This comparative discussion serves to demonstrate the advantages and disadvantages of the Stirling engine and to indicate its proper place in the 1960 family of prime movers. 4. A look backward into the century of history behind the modern engine pointing out significant milestones in the engine's development.
Technical Paper

Friction Characteristics of Controlled-Slip Differential Lubricants

1966-02-01
660778
Controlled-slip differentials (CSD) improve car operation under wheel slipping conditions. The performance of CSD's is dependent upon two criteria associated with clutch friction: “chatter” and “effectiveness.” “Chatter” is an undesirable noise which may occur during differential action. “Effectiveness” is a measure of the ability of the CSD clutches to transfer torque, during wheel slippage, to the wheel with the greater traction. The objective of this investigation was to definitely establish the cause of chatter, measure CSD effectiveness, and relate friction characteristics of lubricants to CSD operation. In tests with an instrumented car, it was found that both chatter and effectiveness are strongly influenced by the lubricant. Chatter occurred with lubricants that produced an increase in clutch friction with decreasing sliding speed. Chatter did not occur with lubricants containing friction modifiers which produced a decrease in clutch friction with decreasing sliding speed.
Technical Paper

Fluid Composition Affects Leakage from Automatic Transmissions

1966-02-01
660397
Tests were conducted using older model cars with automatic transmissions to determine the effect of fluid composition on leakage past the rotating shaft seals. It was found that seal leakage was reduced or stopped by changing to seal-swelling fluids, and increased with seal-shrinking fluids. Leakage was also reduced by adding aromatic additives to existing fluids in the transmissions. Seal volume and hardness change results from bench tests support the car data.
Technical Paper

Evaluating the Effect of Fluids on Automatic Transmission Rotating Shaft Seal Elastomers

1966-02-01
660396
The Total Immersion Test (ASTM D 471) for seal elastomers, used in evaluating the compatibility of fluids and seals for automatic transmissions, does not, produce hardness and volume change results similar to those found for rotating shaft seals in service. The Tip Cycle Test was devised to provide better agreement with service results. In the test, one side of the seal is exposed to air, and the other alternately to fluid and to air-fluid vapor. Rotating shaft seals were evaluated in both car and dynamometer transmission tests, and in various bench tests. Agreement was poor between transmission tests and both the Total Immersion and the Dip Cycle Tests. Good agreement was found with the Tip Cycle Test.
X