Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference

2021-04-06
2021-01-0958
Since the introduction of the DrivAer in 2012 this model has become the standard generic aerodynamic benchmark and aerodynamic research model used by automotive OEMs, software vendors and researchers. In 2017, the relevance of the DrivAer has been furthered by the inclusion of a simplified engine bay. Whilst the DrivAer has become the popular standard, the availability of detailed wind tunnel test data, a key enabler for more sophisticated aerodynamic benchmarking and research, remains limited. This paper presents a comprehensive set of wind tunnel test data of the notchback version of the Ford Open Cooling DrivAer, including aerodynamic force measurements, detailed surface pressure measurements and flow field measurements at 3 cross-sections in the vicinity of the model. In addition, the paper will discuss the sensitivity of the experimental data to wind tunnel repeatability and facility-to-facility variations.
Journal Article

Development and Initial Testing of a Full-Scale DrivAer Generic Realistic Wind Tunnel Correlation and Calibration Model

2018-04-03
2018-01-0731
Wind tunnel testing is conducted to determine the aerodynamic characteristics of a vehicle under controlled and well-defined boundary conditions. Differences in wind tunnel facility layout, design, and subsequent onset flow conditions may result in differing aerodynamic conditions being attained for the same test property in different test facilities. Several OEMs develop vehicles in different regions and utilize local test facilities during the vehicle design process. Understanding the flow characteristics and correlations between test facilities is therefore essential to ensure that global processes can utilize data obtained in any region. Typically, automotive facility correlations are derived by evaluating a fleet of production level test properties in each facility. Adopting a test fleet approach for facility correlation yields three key issues; firstly, there are significant logistics and timing constraints.
X