Refine Your Search

Search Results

Viewing 1 of 1
Journal Article

The Effect of Quench Parameters on Self-Piercing Rivet Joint Performance in a High Strength Automotive 6111 Aluminum Alloy

2021-04-06
2021-01-0273
The process parameters to manufacture structural aluminum alloys are critical to their ductility. In particular, quench rate after solution heat treatment impacts the extent of grain boundary precipitation and the formation of precipitate free zone (PFZ) during later artificial aging. Cu-containing 6XXX alloys used for high strength automotive applications are quench sensitive as the Cu addition leads to Q-phase precipitation at grain boundaries, resulting in loss of ductility, which can negatively affect downstream manufacturing steps such as automotive joining and forming processes. Self-piercing rivet (SPR) joining, is a single step, spot joining process used to mechanically connect sheet materials together in automotive body structures. Ductility has been identified as an important metric of material rivet-ability or the ability to make a successful, crack-free SPR joint.
X