Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

Wheel Dust Measurement and Root Cause Assessment

2003-10-19
2003-01-3341
North American drivers particularly dislike wheel dust (brake dust on their wheels). For some vehicle lines, customer surveys indicate that wheel dust is a significant concern. For this reason, Ford and its suppliers are investigating the root causes of brake dust and developing test procedures to detect wheel dust issues up-front. Intuitively, it would appear that more brake wear would lead to more wheel dust. To test this hypothesis, a gage was needed to quantitatively measure the wheel dust. Gages such as colorimeters were evaluated to measure the brightness (L*) of the wheel, which ranged from roughly 70-80% (clean) to 10-20% (very dirty). Gage R&R's and subjective ratings by a panel of 30 people were used to validate the wheel dust gages. A city traffic vehicle test and an urban dynamometer procedure were run to compare the level of wheel dust for 10 different lining types on the same vehicle.
Technical Paper

Wall Film Dynamics Modeling for Impinging Sprays in Engines

2004-03-08
2004-01-0099
This paper proposes a film dynamics model for liquid film resulting from fuel spray impinging on a wall surface. It is based on a thin film assumption and uses numerical particles to represent the film to be compatible with the particle spray models developed previously. The Lagrangian method is adopted to govern the transport of the film particles. A new, statistical treatment was introduced of the momentum exchange between the impinging spray and the wall film to account for the directional distribution of the impinging momentum. This model together with the previously published models for outgoing droplets constitutes a complete description of the spray wall impingement dynamics. For model validation, films resulting from impinging sprays on a flat surface with different impingement angles were calculated and the results were compared with the corresponding experimental measurements.
Technical Paper

Verification of Accelerated PM Loading for DPF Qualification Studies

2009-04-20
2009-01-1089
High gas prices combined with demand for improved fuel economy have prompted increased interest in diesel engine applications for both light-duty and heavy-duty vehicles. The development of aftertreatment systems for these vehicles requires significant investments of capital and time. A reliable and robust qualification testing procedure will allow for more rapid development with lower associated costs. Qualification testing for DPFs has its basis in methods similar to DOCs but also incorporates a PM loading method and regeneration testing of loaded samples. This paper examines the effects of accelerated loading using a PM generator and compares PM generator loaded DPFs to engine dynamometer loaded samples. DPFs were evaluated based on pressure drop and regeneration performance for samples loaded slowly and for samples loaded under accelerated conditions. A regeneration reactor was designed and built to help evaluate the DPFs loaded using the PM generator and an engine dynamometer.
Technical Paper

Vehicle System Controls for a Series Hybrid Powertrain

2011-04-12
2011-01-0860
Ford Motor Company has investigated a series hybrid electric vehicle (SHEV) configuration to move further toward powertrain electrification. This paper first provides a brief overview of the Vehicle System Controls (VSC) architecture and its development process. The paper then presents the energy management strategies that select operating modes and desired powertrain operating points to improve fuel efficiency. The focus will be on the controls design and optimization in a Model-in-the-Loop environment and in the vehicle. Various methods to improve powertrain operation efficiency will also be presented, followed by simulation results and vehicle test data. Finally, opportunities for further improvements are summarized.
Journal Article

Vehicle System Control Software Validation for the Dual Drive Hybrid Powertrain

2009-04-20
2009-01-0736
Through the use of hybrid technology, Ford Motor Company continues to realize enhanced vehicle fuel economy while meeting customer performance and drivability targets. As is characteristic of all Ford Hybrid Electric Vehicles (HEVs), the basis for resolving these competing requirements resides with its Vehicle System Control (VSC) strategy. This strategy implements complex high-level executive controls to coordinate and optimize the desired operational state of the major HEV powertrain subsystems. To ensure that the VSC software meets its intended functionality, a software validation process developed at Research and Advanced Engineering has been integrated as part of the vehicle controls development process. In this paper, this VSC software validation process implemented for a next generation hybrid powertrain is presented. First, an overview of the hybrid powertrain application and the VSC software architecture is introduced.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle NVH Evaluations and NVH Target Cascading Considerations for Hybrid Electric Vehicles

2015-06-15
2015-01-2362
The increasing trend toward electric and hybrid-electric vehicles (HEVs) has created unique challenges for NVH development and refinement. Traditionally, characterization of in-vehicle powertrain noise and vibration has been assessed through standard operating conditions such as fixed gear engine speed sweeps at varied loads. Given the multiple modes of operation which typically exist for HEVs, characterization and source-path analysis of these vehicles can be more complicated than conventional vehicles. In-vehicle NVH assessment of an HEV powertrain requires testing under multiple operating conditions for identification and characterization of the various issues which may be experienced by the driver. Generally, it is necessary to assess issues related to IC engine operation and electric motor operation (running simultaneously with and independent of the IC engine), under both motoring and regeneration conditions.
Technical Paper

Validating Powertrain Controller Systems With the VPACS-HIL Powertrain Simulator

2005-04-11
2005-01-1663
To manage the function of a vehicle's engine, transmission, and related subsystems, almost all modern vehicles make use of one or more electronic controllers running embedded software, henceforth referred to as a Powertrain Controller System or PCS. Fully validating this PCS is a necessary step of vehicle development, and the validation process requires extensive amounts of testing. Traditionally, this validation testing is done with open-loop signal generators, powertrain dynamometers, and real vehicles. Such testing methods either cannot simulate complex control system interactions, or are expensive and subject to variability. To address these concerns while decreasing development time and improving vehicle quality, Ford Motor Company is placing increasing focus on validating a PCS through simulation. One such testing method is a Hardware-in-the-Loop (HIL) simulation, which mates the physical elements of a PCS to a real-time computer simulation of a powertrain.
Technical Paper

Using Camless Valvetrain for Air Hybrid Optimization

2003-03-03
2003-01-0038
The air-hybrid engine absorbs the vehicle kinetic energy during braking, puts it into storage in the form of compressed air, and reuses it to assist in subsequent vehicle acceleration. In contrast to electric hybrid, the air hybrid does not require a second propulsion system. This approach provides a significant improvement in fuel economy without the electric hybrid complexity. The paper explores the fuel economy potential of an air hybrid engine by presenting the modeling results of a 2.5L V6 spark-ignition engine equipped with an electrohydraulic camless valvetrain and used in a 1531 kg passenger car. It describes the engine modifications, thermodynamics of various operating modes and vehicle driving cycle simulation. The air hybrid modeling projected a 64% and 12% of fuel economy improvement over the baseline vehicle in city and highway driving respectively.
Technical Paper

Understanding of Intake Cam Phasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine

2004-06-08
2004-01-1947
Variable Cam Timing (VCT) has been proven to be a very effective method in PFI (Port Fuel Injection) engines for improved fuel economy and combustion stability, and reduced emissions. In DISI (Direct Injection Spark Ignition) engines, VCT is applied in both stratified-charge and homogeneous charge operating modes. In stratified-charge mode, VCT is used to reduce NOx emission and improve combustion stability. In homogeneous charge mode, the function of VCT is similar to that in PFI engines. In DISI engine, however, the VCT also affects the available fuel-air mixing time. This paper focuses on VCT effects on the induction process and the fuel-air mixing homogeneity in a DISI engine. The detailed induction process with large exhaust-intake valve overlap has been investigated with CFD modeling. Seven characteristic sub-processes during the induction have been identified. The associated mechanism for each sub-process is also investigated.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Tire Cornering/Traction Test Methods

1973-02-01
730147
The paper describes a new tire cornering/traction trailer designed to measure the traction and steering performance of passenger car tires, outlines related test methods, and provides supporting test data. A general set of specifications is given for the entire test system. The major subsystems described are the trailer with its versatile suspension; the tow vehicle and its performance capabilities; the transducer system which measures the normal load, lateral force, fore-and-aft force, aligning torque, steer angle and speed; and the instrumentation. The calibration method is described. The test methods described include those for straight-line braking, maximum lateral traction, steady state and transient steering response, and combined braking and cornering traction. Supporting data and discussion are presented for each test method.
Technical Paper

Thermoplastic Enclosure for a High Voltage Battery System

2017-03-28
2017-01-1190
As electrified powertrains proliferate through original equipment manufacturer vehicle offerings, the focus on system cost and weight reduction intensifies. This paper describes the development and evaluation of a High Voltage (HV) battery system enclosure molded from High Density Polyethylene (HDPE) to deliver substantial cost and weight opportunities. While previous HV battery system enclosure alternatives to steel and aluminum focus on thermoset composites and glass filled polypropylene, this solution leverages select HDPE design techniques established for fuel tanks and applies them to an HV battery system. The result is a tough, energy absorbing structure, capable of hermetic sealing, which simplifies manufacturing by eliminating nearly all fasteners.
Journal Article

Thermoelectric Exhaust Heat Recovery for Hybrid Vehicles

2009-04-20
2009-01-1327
Only a part of the energy released from the fuel during combustion is converted to useful work in an engine. The remaining energy is wasted and the exhaust stream is a dominant source of the overall wasted energy. There is renewed interest in the conversion of this energy to increase the fuel efficiency of vehicles. There are several ways this can be accomplished. This work involves the utilization thermoelectric (TE) materials which have the capability to convert heat directly into electricity. A model was developed to study the feasibility of the concept. A Design of Experiment was performed to improve the design on the basis of higher power generation and less TE mass, backpressure, and response time. Results suggest that it is possible to construct a realistic device that can convert part of the wasted exhaust energy into electricity thereby improving the fuel economy of a gas-electric hybrid vehicle.
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

Thermal Management for the HEV Liquid-Cooled Electric Machine

2001-05-14
2001-01-1713
The future of the Hybrid Electric Vehicle (HEV) is very promising for the automotive industry. In order to take a full advantage of this concept, a better thermal performance of the electric motor is required. In this study, Computational Fluid Dynamics (CFD) model was first verified through several prototypes testing and then is going to be used to execute a series of design of experiment via simulation. Based on the thermal studies in this paper, the integrated coolant jacket design has a better performance than that of separated one. The thermal performance of the stator with the 3M coating is better than the one with paper liner. In addition, using 3M coating reduces the packaging size of the stator.
Technical Paper

Thermal Analysis of Cooling System in Hybrid Electric Vehicles

2002-03-04
2002-01-0710
Increased cooling demands in Hybrid Electric Vehicles (HEVs), compactness of engine compartment, and the additional hardware under the hood make it challenging to provide an effective cooling system that has least impact on fuel economy, cabin comfort and cost. Typically HEVs tend to have a dedicated cooling system for the hybrid components due to the different coolant temperatures and coolant flow rates. The additional cooling system doubles the hardware, maintenance, cost, weight and affects vehicle fuel economy. In addition to the cooling hardware, there are several harnesses and electronics that need air cooling under the hood. This additional hardware causes airflow restriction affecting the convective heat transfer under the hood. It also affects the radiation heat transfer due to the proximity of hardware close to the major heat sources like the exhaust pipe.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
X