Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Dynamics Control for Commercial Vehicles

1997-11-17
973284
This paper presents the Vehicle Dynamics Control (VDC) for commercial vehicles developed by BOSCH. The underlying physical concept is discussed in the second section after a short introduction. The third section shows the computer simulation used in the development process. Section four describes the controller structure of the VDC system. In Section five the use and effectiveness of VDC for commercial vehicles is shown in different critical driving situations. This is done by using measured data collected during testing (lane change, circular track) and it demonstrates that the safety improvements achieved for passenger cars are also possible for commercial vehicles.
Technical Paper

Traction Control (ASR) for Commercial Vehicles. A Further Step Towards Safety on our Roads

1987-11-01
872272
Alongside steering, accelerating and braking are the basic operations in the automobile which are nowadays still left to the driver to perform in their entirety. In performing these basic functions, it may come about that excessive demands are made upon a driver, these arising due to poor road conditions - rain, snow and ice - or as a result of suddenly changing traffic situations. With the introduction of anti-lock braking systems (ABS), a decisive step has been taken to increase active driving and traffic safety. The ABS prevents the lockup of the wheels during overbraking. The vehicle remains steerable and retains stable directional control. Furthermore, in many cases, a shorter braking distance is gained compared to braking with the wheels locked up. BOSCH has been manufacturing and supplying ABS for passenger cars since 1978 and for commercial vehicles and buses since 1981. ABS has proved to be an overwhelming success in practical usage.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

The ABS 6S/4K - A Modular System for Simplified Installation in Tractors, Semi-trailers and Trailers

1990-10-01
902213
Today's ABS sytems for commercial vehicles and trailers reflect specific solutions for individual vehicle model wiring and control features. In addition, the chassis mounting requirements for trailer applications uses a separate sealed housing for the relay and other sensitive components. A logical progression of design development resulted in the new ABS 6S/4K open system with the ability of being adaptable to specific vehicle control requirements. A variety of different component arrangements can be accommodated. Accordingly, it does not require a standard wiring harness. Wiring is left optional for the specific vehicle configuration. The housing may be frame mounted without any special protection and therefore can cover both trailer and tractor applications. The housing is designed to provide necessary protection from water and dirt. The electronic senses the peripheral component configuration via a simple “learning” procedure.
Journal Article

Start/Stop Strategies for Two-Wheelers in the Emerging Markets

2013-10-15
2013-32-9125
Fuel economy of two-wheelers is an important factor influencing the purchasing psychology of the consumer within the emerging markets. Additionally, air pollution being a major environmental topic, there is a rising concern about vehicle emissions, especially in the big cities and their metropolitan areas. Potentially, the relatively expensive engine management systems are providing more features and value in comparison to the carburettor counterpart. The combustion system analysis is carried out on a 125 cm3 motorcycle engine and the subsequent numerical simulation comparing the carburettor and the Electronic (Port) Fuel Injection which provides a basis to establish the fuel consumption benefit for the electronic injection systems [1].
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Technical Paper

Predictive On-Board Diagnosis for Hybrid Electric Vehicles with In-Vehicle Navigation Unit

2015-04-14
2015-01-1224
As the percentage of Hybrid Electric Vehicles (HEV) is increasing, On-Board Diagnosis (OBD) faces new challenges such as limited combustion engine runtime. Moreover, predictive driving strategies for HEV assure that more vehicles are equipped with navigation systems. These systems can provide information about the road conditions such as limit speed, curvature and slope. In this study, navigation road information is used to predict monitoring conditions of OBD functions so that the available OBD time can be used effectively. As an example, catalyst monitoring is considered and a simple vehicle model is proposed which takes velocity and slope prediction from the navigation system to predict torque and exhaust mass flow. The model is composed of a combination of longitudinal motion and a power train torque transition model. Results of this effort are presented for different velocity profiles.
Journal Article

Predictive Multi-Objective Operation Strategy Considering Battery Cycle Aging for Hybrid Electric Vehicles

2018-04-03
2018-01-1011
Due to the new CO2 targets for vehicles, electrification of powertrains and operation strategies for electrified powertrains have drawn more attention. This article presents a predictive multi-objective operation strategy for hybrid electric vehicles (HEVs), which simultaneously minimizes the fuel consumption and the cycle aging of traction batteries. This proposed strategy shows better performance by using predictive information and high robustness to inaccuracy of predictive information. In this work, the benefits of the developed operation strategies are demonstrated in a strong hybrid electric vehicle (sHEV) with P2-configuration. For the cycle aging of a lithium-ion battery, an empirical model is built up with Gaussian processes based on experimental data.
Technical Paper

Overview of Truck Accidents in India and Its Economic Loss Estimation

2021-09-22
2021-26-0007
India contributed to 11% of the global road accidents and was ranked 1st among road deaths according to the latest World Health Organization (WHO) report 2018. Indian National Highways (NH) is a meagre 5% of the country’s road network but accounts for 55% of the road accidents and 61% of the road deaths. Majority of the freight traffic is ferried by Commercial Vehicles (CV) or trucks along these highways and this in turn increases the probability of them being involved in a road accident. The country’s economy is forecasted to thrive in the coming years and hence the requirement of CVs is aligned to international categorisation in the supply chain and shall play a pivotal role. In the year 2019, 13,532 road deaths were associated with CV occupants. The trucking industry is an unorganized sector wherein the illegal overloading of vehicles and over-the-limit driving hours pose a serious threat to road users.
Technical Paper

Optimization of Laminated Stack Solutions for Electric Motors in Electrified Vehicles

2024-04-09
2024-01-2214
The electrification of vehicles marks the introduction of new products to the automotive market and a continued effort to optimize their performance. The electric motor is an important component with which a further optimization of efficiency, power density and cost can be achieved. Additional benefits can be realized in the laminated core. This paper presents an innovative method to produce laminated stacks by a chain of processes different from conventional ways. The process chain presents a sequence of precision blanking, buffering, heat treatment and gluing. The effect of these processes is compared with existing solutions that typically contain some individual features but usually not the combination that enhances the overall effect. The heat treatment decreases residual stresses from previous process steps and reduces power losses in the laminated core. Depending on the design, benefits around 20% are found.
Technical Paper

New Electronic Systems Worldwide - The Supplier's View

1986-11-01
861972
Despite the tough environmental conditions facing electronic systems in commercial vehicles, electronics is gaining ground also in these applications. In the drive sector it improves the operation of the main and auxiliary drives, upgrades fuel efficiency and reduces emission pollutant levels. It enhances safety by preventing wheel spinning in braking and acceleration. Electronic displays reduce the number of single indications otherwise needed, thus making for more clarity in information for the driver and facilitating the driver's task. Self-diagnosing and integrated emergency operation (“limp home”) capabilities are to ensure availability, a factor of special importance in commercial vehicles. A data interface standardized as widely as possible would allow add-on systems to be coupled easily and flexibly.
Journal Article

Motorcycle Stability Control - The Next Generation of Motorcycle Safety and Riding Dynamics

2015-11-17
2015-32-0834
Anti-lock Braking Systems (ABS) for motorcycles have already contributed significantly to the safety of powered two-wheelers (PTW) on public roads by improving bike stability and controllability in emergency braking situations. In order to address further riding situations, another step forward has been achieved with Motorcycle Stability Control (MSC) system. By combining ABS, electronically combined braking system (eCBS), traction control and inertial sensors even in situations like braking and accelerating in corners the riders' safety can be improved. The MSC system controls the distribution of braking and traction forces using an algorithm that takes into account all available vehicle information from wheels, power train and vehicle attitude. With its ability to control fundamental vehicle dynamics, the MSC system will be a basis for further development and integration of comprehensive safety systems.
Technical Paper

Laser-Based Measurements of Surface Cooling Following Fuel Spray Impingement

2018-04-03
2018-01-0273
A major source for soot particle formation in Gasoline-Direct-Injection (GDI) engines are fuel-rich zones near walls as a result of wall wetting during injection. To address this problem, a thorough understanding of the wall film formation and evaporation processes is necessary. The wall temperature before, during and after fuel impingement is an important parameter in this respect, but is not easily measured using conventional methods. In this work, a recently developed laser-based phosphor thermography technique is implemented for investigations of spray-induced surface cooling. This spatially and temporally resolved method can provide surface temperature measurements on the wetted side of the surface without being affected by the fuel-film. Zinc oxide (ZnO) particles, dispersed in a chemical binder, were deposited onto a thin steel plate obtaining a coating thickness of 17 μm after annealing.
Technical Paper

Increased Safety and Improved Comfort Thanks to Electronic Systems for Bus and Truck Applications

1989-11-01
892509
Electronic systems have been used in commercial vehicles for quite a few years now. At the start, this primarily related to consumer electronics equipment (car radio and CB radio), but, since the late 70s, electronic control systems have also been used for a wide variety of applications in commercial vehicles. This development went hand in hand with the development of digital microcontrollers. It was only when such powerful electronic circuits were developed that it was possible to implement complex control tasks at feasible cost with adequately compact design. Nowadays, an extremely wide variety of systems is offered for the engine, suspension, brakes, comfort and entertainment.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Hitch System Comparison — Mechanical, Hydraulic, Electronic

1984-09-01
841130
Modern agricultural tractors are equipped with a hitch control system. These may be mechanical-hydraulic, hydraulic-hydraulic, or electronic-hydraulic. With the variety of design options open to the tractor manufacturer, it is important to select the system which best fits the manufacturer and end user. This paper presents a comprehensive comparison of each system. Robert Bosch has had many years experience in the design and manufacture of components for hitch systems, and hopes to help designers choose the approach best suited for them.
Technical Paper

Generic Methodology for Vibration and Wear Analysis to Understand Their Influences in an Electric Drivetrain

2020-09-30
2020-01-1506
The prime factor which influences noise and vibrations of electro-mechanical drives is wear at the components. This paper discusses the numerical methods developed for abrasion, vibration calculations and the coupling between wear and Noise Vibration and Harshness (NVH) models of the drive unit. The vibration domain model, initially, focuses on the calculations of mechanical excitations at the gear shafts which are generated via a nonlinear dynamic model. Furthermore, the bearings are studied for the influences on their stiffness and eventually their impact on the harmonics of the drivetrain. Later, free and forced vibrations of the complete drivetrain are simulated via a steady-state dynamic model. Consequently, the paper concentrates on the abrasion calculations at the gears. Wear is a complex process and understanding it is essential for determining the vibro-acoustics characteristics.
Technical Paper

Experimental and Numerical Comparison of Fuel Economy for 125cc Motorcycles with Carburetor or Electronic Port Fuel Injection Based on Different Drive Cycles

2012-10-23
2012-32-0067
Based on the fuel consumption analysis methods published on last year's SETC [1], we compared fuel economies of a typical 125cc production motorcycle equipped with either electronic (port) fuel injection (EFI/PFI) engine management system (EMS) or constant vacuum carburetor (Carb). In addition to earlier discussed PFI results, stationary engine map measurements of fuel consumption on an engine dynamometer (dyno) were conducted for the Carb engine. The powerful development tool of fuel consumption test cycle simulation uses these stationary engine dyno results to calculate fuel consumption of real transient vehicle operation. Here it was employed to assess economy of both fuel system configurations under different driving conditions. Besides the Indian Driving Cycle (IDC) and the World Motorcycle Test Cycle (WMTC), we investigated real world drive patterns typical for emerging markets in terms of a Bangalore urban cycle and a Malaysian suburban cycle.
Technical Paper

Electronic Braking System EBS - Status and Advanced Functions

1998-11-16
982781
Since 1996 a 2nd Generation EBS has been available in Europe as an advanced brake system offering a variety of advantages to the OEM as well as to the truck and fleet owner. EBS enhances vehicle safety and improves the braking performance to a “passenger car like” braking feel, allowing less experienced drivers better vehicle handling. The brake lining wear control and retarder integration allow the reduction of operational costs. The safety enhancements achieved by EBS in conjunction with disc brakes, are rewarded by European truck insurance companies by lower insurance fees. The importance of EBS will still gain significantly through the developments in process. EBS is the platform for ESP and ACC, which will be a major contributer to better integration of trucks in dense traffic flow.
X