Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Side Mirror Soiling Investigation through the Characterization of Water Droplet Formation and Size behind a Generic Plate

2024-02-27
2024-01-5030
The improvement of vehicle soiling behavior has increasing interest over the past few years not only to satisfy customer requirements and ensure a good visibility of the surrounding traffic but also for autonomous vehicles, for which soiling investigation and improvement are even more important due to the demands of the cleanliness and induced functionality of the corresponding sensors. The main task is the improvement of the soiling behavior, i.e., reduction or even prevention of soiling of specific surfaces, for example, windows, mirrors, and sensors. This is mostly done in late stages of vehicle development and performed by experiments, e.g., wind tunnel tests, which are supplemented by simulation at an early development stage. Among other sources, the foreign soiling on the side mirror and the side window depend on the droplet detaching from the side mirror housing.
Technical Paper

Function-in-the-Loop Simulation of Electromechanical Steering Systems—Concept, Implementation, and Use Cases

2023-02-10
2023-01-5011
The accelerated processes in vehicle development require new technologies for function development and validation. With this motivation, Function-in-the-Loop (FiL) simulation was developed as a link between Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation. The combination of real Electronic Control Unit (ECU) hardware and software in conjunction with virtual components is very well suited for function development and testing. This approach opens up new possibilities for mechatronic systems that would otherwise require special test benches. For this reason, an Electric Power Steering (EPS) was transferred to a virtual environment using FiL simulation. This enables a wide range of applications, from EPS testing to the development of connected driving functions on an integrated platform. Right from the early development phases, the technology can be used purposefully with short integration cycles.
Journal Article

Acoustic-Fluid-Structure Interaction (AFSI) in the Car Underbody

2022-06-15
2022-01-0938
The turbulent flow around vehicles causes high amplitude pressure fluctuations at the underbody, consisting of both hydromechanic and acoustic contributions. This induces vibrations in the underbody structures, which in turn may lead to sound transmission into the passenger compartment, especially at low frequencies. To study these phenomena we present a run time fully coupled acoustic-fluid-structure interaction framework expanding a validated hybrid CFD-CAA solver. The excited and vibrating underbody is resembled by an aluminium plate in the underbody of the SAE body which allows for sound transmission into the interior. Different excitation situations are generated by placing obstacles at the underbody upstream of the aluminium plate. For this setup we carry out a fully coupled simulation of flow, acoustics and vibration of the plate.
X