Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel

2019-10-11
2019-28-0100
Tensile and axial fatigue tests were conducted on shallow cryogenically treated EN19 medium carbon alloy steel to investigate its mechanical behavior. The test samples were conventionally heat treated then oil quenched at room temperature. Followed by the samples were kept for shallow cryogenic treatment to -80°C for 8 hours using liquid nitrogen. Then the samples were tempered in a muffle furnace to relieve the induced residual stresses. Tensile and axial fatigue test were carried out on both treated and non-treated samples to measure its tensile strength and fatigue behavior respectively. Microscopic examination also had done to compare the effect of shallow cryogenic treatment on its microstructure. The results exposed that there is an increase in the tensile strength and reduction in fatigue life of shallow cryogenically treated samples over base metal and improved wear resistance.
Technical Paper

Optimization and Experimental Analysis of AZ91E Hybrid Nanocomposite by Drilling Operation

2020-09-25
2020-28-0509
The usage of AZ91E series magnesium alloy material increases in the field of automobile, aerospace and structural applications because of its enhanced mechanical properties, light weight and good machinability characteristics. The present investigation is to optimize the drilling process parameters of magnesium alloy (AZ91E) hybrid nano composite consisting of chopped basalt fiber (9wt%) and SiCp (7.5wt%) fabricated by vacuum stirring technique. AZ91E hybrid nano composite is drilled by M-Tab vertical machining centre equipped with CNC under dry state (without coolant). The dry state drilling operation was performed by HSS tool with varied input parameters like drill diameter (6mm, 8mm, 10mm and 12mm), spindle speed (200rpm, 300rpm 400rpm 500rpm), feed rate (5mm/min, 10mm/min, 15 mm/min, 20 mm/min) with constant depth of cut (15mm).
Technical Paper

Multi Characteristics Optimization of Treated Drill Tool in Drilling Operation Key Process Parameter Using TOPSIS and ANOVA Technique

2019-10-11
2019-28-0055
To survive in the present global competitive world, the manufacturing sectors have been making use of various tools to achieve the high quality products at a comparatively cheaper price. Appropriate cutting set up must be used to further better the machinability of a work piece material. A longer life of the tools and equipment’s are important factors in any industry. Since the inception of the machine tool industry, cutting tool life and tool wear remain a subject of deep interest to study its failure and improvement. The present study finds out the optimum cutting results in drilling of AM60 magnesium alloy using different cryogenically treated cutting inserts. The Utility concept coupled with Taguchi with Multi response approach (TOPSIS) was employed. According to Analysis of variance (ANOVA) results, the feed was the major dominating factor followed by the cutting speed.
Technical Paper

Load Bearing Analysis of Titanium Surface Ground with CBN Wheel and 6% CNT-CBN Wheel

2023-11-10
2023-28-0080
Surface integrity is an important factor in the effective functioning of a component. For this reason, the surface finish is given as meticulous attention as possible, while quality checks are rigorous. The process parameters affecting surface roughness are carefully controlled, with many preventive measures enforced to avoid deviation from the tolerance limits. Surface finish is an important part of the load-bearing properties of a surface as the asperities on its surface first come into contact with the mating surfaces. On contact, the asperities are flattened, and there is debris formation. These asperities are critical in joint replacements where Titanium is a material of choice, as the debris can react with bones and even cause necrosis of bone. The surface finish of Titanium is important as the asperities can function as points of stress when subjected to loads. Stress concentrators are detrimental to a material’s life; therefore, a part’s surface finish becomes critical.
Technical Paper

Investigation of Setting Input Process Parameters for Getting Better Product Quality in Machining of AM60 Magnesium Alloy - TOPSIS and ANOVA Approach

2019-10-11
2019-28-0136
This investigation shows the improvement of Machining parameters on AM-60 Mg alloy made with the help of Gravity Die Casting and with reactions upheld symmetrical cluster with “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS). Which Focuses on the streamlining of Machining parameters utilizing the system to get least surface Roughness (Ra), Minimum Tool Wear, minimum Cutting Time, Power Requirement and Torque and Maximize MRR. A good amount of Machining tests was directed in view of the L9 Orthogonal array on CNC machine. The trials were performed on AM60 utilizing cutting device of grade-ISO 460.1-1140-034A0-XM GC3 of 12,16 and 25 mm width with cutting point of 140 degrees, all throughout the test work under various cutting conditions. TOPSIS and ANOVA were utilized to work out the major vital parameters like Cutting speed, feed rate, Depth of Cut and Tool Diameter which influence the Response. The normal qualities and estimated esteems are genuinely close.
Technical Paper

Improvement of Mechanical Properties, and Optimization of Process Parameters of AISI 1050 Spheriodized Annealed Steel by Ranking Algorithm

2019-10-11
2019-28-0143
AISI 1050 is used in the production of landing gear, actuators and other aerospace components but their application is limited due to machinability of the material. In any metal cutting operation the features of tools, input work materials, machine parameter settings will influence the process efficiency and output quality characteristics. A significant improvement in process efficiency may be obtained by process parameter optimization that identifies and determines the regions of critical process control factors leading to desired outputs or responses with acceptable variations ensuring a lower cost of manufacturing. This experimental study elucidates the problems and machinability issues like failure of tools and accuracy are found while machining and less output in machining. In the present study of spherodizing heat treatment of AISI 1050 was investigated during the turning operation in CNC lathe, under the consideration of several turning process parameters.
Technical Paper

Effect of ZrO2 Nanoparticles Loading on the Tribo-Mechanical Behavior of Magnesium Alloy Nanocomposites

2023-11-10
2023-28-0130
Magnesium alloy nanocomposite prepared with hard ceramic particles via conventional technique is a promising future material for automotive applications due to its unique characteristics like low density, high strength, castability, and good wear resistance. The present study is to enhance the tribo-mechanical properties of alumina nanoparticle (10wt %) reinforced magnesium alloy (Mg/Al) composite by incorporating 1wt%, 3wt%, and 5wt% zirconium dioxide (ZrO2) nanoparticles through stir casting method. The tensile strength, impact toughness, hardness, and wear rate of developed composites were compared with (10wt %) alumina nanoparticles reinforced magnesium alloy composite. The nanocomposite containing 3wt% ZrO2 shows maximum impact strength of 22.8 J/mm2. The maximum tensile strength (88.9MPa), hardness (124.5BHN), and wear resistance (9.802mm3/m at 20N) are obtained for 5wt% ZrO2 magnesium alloy nanocomposite.
Technical Paper

Development of Silicon Carbide Dispersed Steel Using Wire Arc Additive Manufacturing Process

2023-11-10
2023-28-0126
High-strength steel has several industrial applications such as automobile, tool and die, construction industries etc. However, it is challenging to achieve it. Various strengthening mechanisms, such as dispersion strengthening, alloying, grain boundary strengthening etc., plays a vital role in deciding the properties of the steel. At the industrial level, high-strength steel is produced by adding alloying elements such as Tungsten, Chromium, and Molybdenum in the steel matrix, increasing the high-strength steel cost. On the other hand, Wire Arc Additive manufacturing (WAAM) can produce dispersion strengthening in steel to mimic the properties of a high-strength steel matrix. The WAAM is a relatively low-cost additive manufacturing technology which uses a welding process to build up layers of material to fabricate the finished product. We have dispersed hard silicon carbide (SiC) particles in the mild steel matrix using the WAAM process in this work.
Technical Paper

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

2019-10-11
2019-28-0178
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings.
Technical Paper

Assessment of Numerical Cold Flow Testing of Gas Turbine Combustor through an Integrated Approach Using Rapid Prototyping and Water Tunnel

2019-10-11
2019-28-0051
In the present work, it is aimed at developing an integrated approach for combustor modeling involving rapid prototyping and water tunnel testing to assess the cold flow numerical simulations; the physical model will be subjected to cold flow visualization and parametric studies and CFD analysis to demonstrate its capability for undergoing rigorous cold flow testing. A straight through annular combustors is chosen for the present study because of it has low pressure drop, less weight and used widely in modern day aviation engines. Numerical Analysis has been performed using ANSYS-FLUENT. Three dimensional RANS equations are solved using k-ɛ model for the Reynolds numbers ranging from 0.64 x 105-1.5 x 105 based on the annulus diameter. Post processing the results is done in terms of jet penetration, formation of recirculation zone, effective mixing, flow split and pressure drop for different cases.
X