Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel

2019-10-11
2019-28-0100
Tensile and axial fatigue tests were conducted on shallow cryogenically treated EN19 medium carbon alloy steel to investigate its mechanical behavior. The test samples were conventionally heat treated then oil quenched at room temperature. Followed by the samples were kept for shallow cryogenic treatment to -80°C for 8 hours using liquid nitrogen. Then the samples were tempered in a muffle furnace to relieve the induced residual stresses. Tensile and axial fatigue test were carried out on both treated and non-treated samples to measure its tensile strength and fatigue behavior respectively. Microscopic examination also had done to compare the effect of shallow cryogenic treatment on its microstructure. The results exposed that there is an increase in the tensile strength and reduction in fatigue life of shallow cryogenically treated samples over base metal and improved wear resistance.
Technical Paper

Sliding Wear and Friction Studies of Disc/ Pad Materials

2018-04-03
2018-01-0840
Brake disc provides friction force with minimum weight loss on application of brake. The pad material only experiences more wear and friction. Disc and pad materials are selected to give a stable and high coefficient of friction (0.25-0.40). COF is directly proportional to braking force generated and inversely proportional to the stopping distance. The aim of the study is to identify a new material for replacement of pad material in practice. In this study, wear, hardness and friction properties of E glass fiber with epoxy resin and cashew friction dust composite are studied and compared with brake pad material in practice. The hardness was measured using shore hardness tester. The wear and friction was measured using the pin on disc wear testing machine. The pad material was made as pin with cast iron as the disc material for wear studies. The wear studies were conducted for various load conditions and sliding velocities.
Technical Paper

Optimization and Experimental Analysis of AZ91E Hybrid Nanocomposite by Drilling Operation

2020-09-25
2020-28-0509
The usage of AZ91E series magnesium alloy material increases in the field of automobile, aerospace and structural applications because of its enhanced mechanical properties, light weight and good machinability characteristics. The present investigation is to optimize the drilling process parameters of magnesium alloy (AZ91E) hybrid nano composite consisting of chopped basalt fiber (9wt%) and SiCp (7.5wt%) fabricated by vacuum stirring technique. AZ91E hybrid nano composite is drilled by M-Tab vertical machining centre equipped with CNC under dry state (without coolant). The dry state drilling operation was performed by HSS tool with varied input parameters like drill diameter (6mm, 8mm, 10mm and 12mm), spindle speed (200rpm, 300rpm 400rpm 500rpm), feed rate (5mm/min, 10mm/min, 15 mm/min, 20 mm/min) with constant depth of cut (15mm).
Technical Paper

Multi Characteristics Optimization of Treated Drill Tool in Drilling Operation Key Process Parameter Using TOPSIS and ANOVA Technique

2019-10-11
2019-28-0055
To survive in the present global competitive world, the manufacturing sectors have been making use of various tools to achieve the high quality products at a comparatively cheaper price. Appropriate cutting set up must be used to further better the machinability of a work piece material. A longer life of the tools and equipment’s are important factors in any industry. Since the inception of the machine tool industry, cutting tool life and tool wear remain a subject of deep interest to study its failure and improvement. The present study finds out the optimum cutting results in drilling of AM60 magnesium alloy using different cryogenically treated cutting inserts. The Utility concept coupled with Taguchi with Multi response approach (TOPSIS) was employed. According to Analysis of variance (ANOVA) results, the feed was the major dominating factor followed by the cutting speed.
Technical Paper

Investigation of Setting Input Process Parameters for Getting Better Product Quality in Machining of AM60 Magnesium Alloy - TOPSIS and ANOVA Approach

2019-10-11
2019-28-0136
This investigation shows the improvement of Machining parameters on AM-60 Mg alloy made with the help of Gravity Die Casting and with reactions upheld symmetrical cluster with “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS). Which Focuses on the streamlining of Machining parameters utilizing the system to get least surface Roughness (Ra), Minimum Tool Wear, minimum Cutting Time, Power Requirement and Torque and Maximize MRR. A good amount of Machining tests was directed in view of the L9 Orthogonal array on CNC machine. The trials were performed on AM60 utilizing cutting device of grade-ISO 460.1-1140-034A0-XM GC3 of 12,16 and 25 mm width with cutting point of 140 degrees, all throughout the test work under various cutting conditions. TOPSIS and ANOVA were utilized to work out the major vital parameters like Cutting speed, feed rate, Depth of Cut and Tool Diameter which influence the Response. The normal qualities and estimated esteems are genuinely close.
Technical Paper

Informatics Based Design of Bio-Lubricant with Nano Friction Modifiers and Evaluation of Its Tribological Properties

2018-07-09
2018-28-0100
Statistical and computational intelligence techniques were employed for informatics based design of nano friction modifiers added bio-lubricant. Systematic data were generated through laboratory experiments, using design of experiment, to study the effect of addition of multi-wall carbon nanotubes as friction modifiers in castor oil on frictional properties. The experimental data were used to develop data driven models using statistical techniques, artificial neural network and fuzzy inference systems. The simulation studies which were based on the model predictions were used to design the nano-lubricant with multi-walled carbon nanotubes as the friction modifiers. The optimum combination of nanotube concentration and load, found from the model predictions, were experimentally validated.
Technical Paper

Effect of ZrO2 Nanoparticles Loading on the Tribo-Mechanical Behavior of Magnesium Alloy Nanocomposites

2023-11-10
2023-28-0130
Magnesium alloy nanocomposite prepared with hard ceramic particles via conventional technique is a promising future material for automotive applications due to its unique characteristics like low density, high strength, castability, and good wear resistance. The present study is to enhance the tribo-mechanical properties of alumina nanoparticle (10wt %) reinforced magnesium alloy (Mg/Al) composite by incorporating 1wt%, 3wt%, and 5wt% zirconium dioxide (ZrO2) nanoparticles through stir casting method. The tensile strength, impact toughness, hardness, and wear rate of developed composites were compared with (10wt %) alumina nanoparticles reinforced magnesium alloy composite. The nanocomposite containing 3wt% ZrO2 shows maximum impact strength of 22.8 J/mm2. The maximum tensile strength (88.9MPa), hardness (124.5BHN), and wear resistance (9.802mm3/m at 20N) are obtained for 5wt% ZrO2 magnesium alloy nanocomposite.
Technical Paper

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

2019-10-11
2019-28-0178
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings.
Technical Paper

Corrosion Study of NIP and NIP Composite Plated Piston Ring

2018-07-09
2018-28-0103
Piston rings are used to seal the cavity formed between the piston and cylinder in order to allow the engine to operate efficiently. The Piston rings wear out due to constant rubbing action with cylinder wall and also have to withstand very high temperature. The top compression ring is the closest to combustion gases and is exposed to the greatest amount of chemical corrosion and highest operating temperature. This has lead to development of new coatings to piston ring with good wear and corrosion resistance. One such coating is Nickel Phosphorus (Ni-P) and Nickel Phosphorus composite coating (Ni-P SiC) used in automotive industry. Reinforcement of ceramic particle not only enhances the tribological property but also the corrosion resistance behavior. The electroplated Ni-P & Ni-P metal matrix with ultra-fine SiC particles of 0.6 microns to a coating thickness of 30 microns minimum.
Technical Paper

Aerodynamic Drag Reduction of an Intercity Bus through Surface Modifications - A Numerical Simulation

2019-10-11
2019-28-0045
The maximum power produced by the Engine is utilized in overcoming the Aerodynamic resistance while the remaining has been used to overcome rolling and climbing resistance. Increasing emission and performance demands paves way for advanced technologies to improve fuel efficiency. One such way of increasing the fuel efficiency is to reduce the aerodynamic drag of the vehicle. Buses emerged as the common choice of transport for people in India. By improving the aerodynamic drag of the Buses, the diesel consumption of a vehicle can be reduced by nearly about 10% without any upgradation of the existing engine. Though 60 to 70 % of pressure loads act on the frontal surface area of the buses, the most common techniques of reducing the drag in buses includes streamlining of the surfaces, minimizing underbody losses, reduced frontal area, pressure difference between the front & rear area and minimizing of flow separation & wake regions.
Technical Paper

A Combined Automotive Exhaust Heat Recovery Technique Using Phase Change Material and Jet Impingement Heat Transfer with Wall Protrusions and Baffle

2022-12-23
2022-28-0512
Automotives play a very important role in day-to-day human lives. The exhaust gas emitted from automotive vehicles of current technologies is one of the major contributions to global temperature increment. It is important to develop a system that can conserve energy and incorporate it into current vehicles which are in use. Phase change materials (PCM) are well known for energy storage applications because of their crucial thermophysical property known as latent heat of fusion. The gas from the exhaust pipe of automobiles can be considered a turbulent jet. With this assumption in this study, a system is proposed by combining jet impingement and phase change material at the exhaust pipe of automobiles to recover the thermal energy which is being let out into the atmosphere as waste. Liquid Gallium is chosen as a phase change material for this study because of its high thermal conductivity nature compared to other hydrocarbon-based phase change materials.
X