Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Plastic Laminate Pulsed Power Development

2000-10-31
2000-01-3613
The desire to move high-energy Pulsed Power systems from the laboratory to practical field systems requires the development of compact lightweight drivers. This paper concerns an effort to develop such a system based on a plastic laminate strip Blumlein as the final pulse shaping stage for a 600 kV, 50ns, 5-ohm driver. A lifetime and breakdown study conducted with small-area samples identified Kapton sheet impregnated with Propylene Carbonate as the best material combination of those evaluated. The program has successfully demonstrated techniques for folding large area systems into compact geometry's and vacuum impregnating the laminate in the folded systems. The major operational challenges encountered revolve around edge grading and low inductance, low impedance switching. The design iterations and lessons learned will be discussed. A multistage prototype testing program has demonstrated 600kV operation on a short 6ns line.
Journal Article

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

2017-06-05
2017-01-1765
Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
Technical Paper

Miniaturized Chemical Analysis Systems (μChemLab) for Selective and Sensitive Gas Phase Detection

1999-07-12
1999-01-2060
This paper describes a program to develop a miniaturized chemical laboratory (μChemLab™). This system includes multiple analysis channels each with microfabricated sample collectors/concentrators, gas chromatographic separators, and chemically selective detectors based on an array of coated surface acoustic wave devices. This development effort is currently focused on fabricating small (palm-top computer sized), lightweight, and autonomous systems that provide rapid (1 min), sensitive (1-10 ppb), and selective detection of chemical warfare agents. The small size and low power of the μChemLab™ technology make it potentially useful for monitoring of compounds such as volatile organic compounds (VOCs), ammonia, and formaldehyde in space environments.
Technical Paper

Low Temperature Electrical Performance Characteristics of Li-Ion Cells

1999-08-02
1999-01-2462
Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. The motivation behind these efforts involves, among other things, a favorable combination of energy and power density. For some of the applications the power sources may need to perform at a reasonable rate at subambient temperatures. Given the nature of the lithium-ion cell chemistry the low temperature performance of the cells may not be very good. At Sandia National Laboratories, we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cells. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures.
Technical Paper

Impulsive Loadings of Composite Shells

1989-09-01
892369
Two tests of composite shells loaded under half-cosine impulsive loadings are discussed. One cylinder which included no other materials was modeled successfully such that calculated results matched test results out to late times. The other cylinder, which included an inner annulus of an elastomeric material, was less successfully modeled, even though the composite material was modeled similarly in both instances. A viscoelastic model and an elastic model were both used to model the elastomeric material, and the viscoelastic model produced significantly better results.
Technical Paper

Improving Aircraft Composite Inspections Using Optimized Reference Standards

1998-11-09
983120
The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft.
Technical Paper

Evaluation of Plasma-Sprayed, Thin-Film Pyrite Cathodes for Thermal Batteries

1999-08-02
1999-01-2513
Thermal batteries are normally constructed using pressed-powder anode, separator, and cathode pellets (discs). However, parts less than 0.010” thick are difficult to press from the starting powders. The use of plasma spraying to deposit thin pyrite films onto a stainless steel substrate was examined as an alternative to pressed-powder cathodes. The electrodes were tested under isothermal conditions and constant-current discharge over a temperature range of 400°C to 550°C using a standard LiSi anode and a separator based on the LiCIKCI eutectic. The plasma-sprayed cathodes were also evaluated in similar 5-cell thermal batteries. Cells and batteries using pressed-powder cathodes were tested under the same conditions for comparative purposes.
Technical Paper

Evaluation of Aerogel Materials for High-Temperature Batteries

1999-08-02
1999-01-2479
Silica aerogels have 1/3 the thermal conductivity of the best commercial composite insulations, or ~13 mW/m-K at 25 °C. However, aerogels are transparent in the near IR region of 4-7 μm, which is where the radiation peak from a thermal-battery stack occurs. Titania and carbon-black powders were examined as thermal opacifiers, to reduce radiation at temperatures between 300°C and 600°C, which spans the range of operating temperature for most thermal batteries. The effectiveness of the various opacifiers depended on the loading, with the best overall results being obtained using aerogels filled with carbon black. Fabrication and strength issues still remain, however.
Technical Paper

Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

1999-08-02
1999-01-2561
We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th-scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750°C. The air/fuel mixture was electrically preheated to 640°C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a full-scale hybrid receiver.
Technical Paper

Detection Reliability Study for Interlayer Cracks

1998-11-09
983125
The Federal Aviation Administration Airworthiness Assurance Nondestructive Inspection Validation Center (FAA-AANC) is currently conducting a detection reliability study pertaining to the detection of cracks in multi-layered aluminum sheets. This paper describes the design, production and characterization of test specimens that are currently being used to conduct third layer Probability of Detection (PoD) experiments. Pertinent aspects of the lap splice joints for Boeing 737 aircraft, Line Numbers 292 - 2565 are included in the test specimens. A preliminary analysis of the data indicates that for some inspectors, traditional measures of performance - in particular PoD curves based on maximum likelihood fit to two-parameter lognormal curve - may be misleading.
Journal Article

Application of a Tunable-Diode-Laser Absorption Diagnostic for CO Measurements in an Automotive HCCI Engine

2010-10-25
2010-01-2254
An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 μm. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.
X