Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging

2009-04-20
2009-01-0658
Shadowgraph/schlieren imaging techniques have often been used for flow visualization of reacting and non-reacting systems. In this paper we show that high-speed shadowgraph visualization in a high-pressure chamber can also be used to identify cool-flame and high-temperature combustion regions of diesel sprays, thereby providing insight into the time sequence of diesel ignition and combustion. When coupled to simultaneous high-speed Mie-scatter imaging, chemiluminescence imaging, pressure measurement, and spatially-integrated jet luminosity measurements by photodiode, the shadowgraph visualization provides further information about spray penetration after vaporization, spatial location of ignition and high-temperature combustion, and inactive combustion regions where problematic unburned hydrocarbons exist. Examples of the joint application of high-speed diagnostics include transient non-reacting and reacting injections, as well as multiple injections.
Journal Article

Understanding Hydrocarbon Emissions to Improve the Performance of Catalyst-Heating Operation in a Medium-Duty Diesel Engine

2023-04-11
2023-01-0262
To cope with regulatory standards, minimizing tailpipe emissions with rapid catalyst light-off during cold-start is critical. This requires catalyst-heating operation with increased exhaust enthalpy, typically by using late post injections for retarded combustion and, therefore, increased exhaust temperature. However, retardability of post injection(s) is constrained by acceptable pollutant emissions such as unburned hydrocarbon (UHC). This study provides further insight into the mechanisms that control the formation of UHC under catalyst-heating operation in a medium-duty diesel engine, and based on the understanding, develops combustion strategies to simultaneously improve exhaust enthalpy and reduce harmful emissions. Experiments were performed with a full boiling-range diesel fuel (cetane number of 45) using an optimized five-injections strategy (2 pilots, 1 main, and 2 posts) as baseline condition.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

Two-Photon Laser-Induced Fluorescence of Nitric Oxide in a Diesel Engine

2006-04-03
2006-01-1201
In-cylinder concentrations of nitric oxide (NO) in a diesel engine were studied using a laser-induced fluorescence (LIF) technique that employs two-photon excitation. Two-photon NO LIF images were acquired during the expansion and exhaust portions of the engine cycle providing useful NO fluorescence signal levels from 60° after top dead center through the end of the exhaust stroke. The engine was fueled with the oxygenated compound diethylene glycol diethyl ether to minimize soot within the combustion chamber. Results of the two-photon NO LIF technique from the exhaust portion of the cycle were compared with chemiluminescence NO exhaust-gas measurements over a range of engine loads from 1.4 to 16 bar gross indicated mean effective pressure. The overall trend of the two-photon NO LIF signal showed good qualitative agreement with the NO exhaust-gas measurements.
Journal Article

Two-Color Diffused Back-Illumination Imaging as a Diagnostic for Time-Resolved Soot Measurements in Reacting Sprays

2013-10-14
2013-01-2548
Despite ongoing research efforts directed at reducing engine-out emissions, diesel engines are known to be one of the largest sources of atmospheric particulate matter (i.e., soot). Quantitative measurements are of primary importance to address soot production during the combustion process in the cylinder of diesel engines. This study presents the capabilities of an extinction-based diagnostic developed to quantitatively measure the soot volume fraction in n-dodecane sprays injected in a high-pressure, high-temperature vessel. Coupled with high-speed imaging, the technique yields time-resolved measurements of the soot field by relying on a diffused back-illumination scheme to improve extinction quantification in the midst of intense beam steering. The experiments performed in this work used two wavelengths, which, when combined with the Rayleigh-Debye-Gans theory, provide information about the optical and physical properties of soot.
Technical Paper

Transmission Electron Microscopy of Soot Particles sampled directly from a Biodiesel Spray Flame

2011-08-30
2011-01-2046
For better understanding of soot formation and oxidation processes in a biodiesel spray flame, the morphology, microstructure and sizes of soot particles directly sampled in a spray flame fuelled with soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at different axial locations in the spray flame, 40, 50 and 70 mm from injector nozzle, which correspond to soot formation, peak, and oxidation zones, respectively. The biodiesel spray flame was generated in a constant-volume combustion chamber under a diesel-like high pressure and temperature condition (6.7 MPa, 1000K). Density, diameter of primary particles and radius of gyration of soot aggregates reached a peak at 50 mm from the injector nozzle and was lower or smaller in the formation or oxidation zones of the spray.
Journal Article

Transmission Electron Microscopy of Soot Particles Directly Sampled in Diesel Spray Flame - A Comparison between US#2 and Biodiesel Soot

2012-04-16
2012-01-0695
For a better understanding of soot formation and oxidation processes in conventional diesel and biodiesel spray flames, the morphology, microstructure and sizes of soot particles directly sampled in spray flames fuelled with US#2 diesel and soy-methyl ester were investigated using transmission electron microscopy (TEM). The soot samples were taken at 50mm from the injector nozzle, which corresponds to the peak soot location in the spray flames. The spray flames were generated in a constant-volume combustion chamber under a diesel-like high pressure and high temperature condition (6.7MPa, 1000K). Direct sampling permits a more direct assessment of soot as it is formed and oxidized in the flame, as opposed to exhaust PM measurements. Density of sampled soot particles, diameter of primary particles, size (gyration radius) and compactness (fractal dimension) of soot aggregates were analyzed and compared. No analysis of the soot micro-structure was made.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

The Use of Transient Operation to Evaluate Fuel Effects on Knock Limits Well beyond RON Conditions in Spark-Ignition Engines

2017-10-08
2017-01-2234
Fundamental engine research is primarily conducted under steady-state conditions, in order to better describe boundary conditions which influence the studied phenomena. However, light-duty automobiles are operated, and tested, under heavily transient conditions. This mismatch between studied conditions and in-use conditions is deemed acceptable due to the fundamental knowledge gained from steady-state experiments. Nonetheless, it is useful to characterize the conditions encountered during transient operation and determine if the governing phenomena are unduly influenced by the differences between steady-state and transient operation, and further, whether transient behavior can be reasonably extrapolated from steady-state behavior. The transient operation mode used in this study consists of 20 fired cycles followed by 80 motored cycles, operating on a continuous basis.
Technical Paper

The Influence of Swirl on HSDI Diesel Combustion at Moderate Speed and Load

2000-06-19
2000-01-1829
Heat release analysis of the in-cylinder pressure records and images of the naturally occurring combustion luminosity obtained in an optical engine are used to explore the effect of variable swirl ratio on the diesel combustion process. Swirl ratios Rs at IVC of 1.5, 2.5, and 3.5 were investigated. The engine is equipped with common-rail fuel injection equipment, and the combustion chamber geometry is maintained as close as possible to typical engines intended for automotive applications. The operating condition employed was 2000 rpm, with a gross IMEP of 5.0 bar and 800 bar injection pressure. Swirl ratio is found to exert a measurable influence on most of the combustion process, from ignition to late-cycle oxidation. Ignition delay decreases with increasing Rs, as do the magnitudes of the initial premixed burn, the peak rates of heat release, and the maximum rates of pressure rise.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Journal Article

The Impact of Fuel Mass, Injection Pressure, Ambient Temperature, and Swirl Ratio on the Mixture Preparation of a Pilot Injection

2013-09-08
2013-24-0061
Fuel tracer-based planar laser-induced fluorescence is used to investigate the vaporization and mixing behavior of pilot injections for variations in pilot mass of 1-4 mg, and for two injection pressures, two near-TDC ambient temperatures, and two swirl ratios. The fluorescent tracer employed, 1-methylnaphthalene, permits a mixture of the diesel primary reference fuels, n-hexadecane and heptamethylnonane, to be used as the base fuel. With a near-TDC injection timing of −15°CA, pilot injection fuel is found to penetrate to the bowl rim wall for even the smallest injection quantity, where it rapidly forms fuel-lean mixture. With increased pilot mass, there is greater penetration and fuel-rich mixtures persist well beyond the expected pilot ignition delay period. Significant jet-to-jet variations in fuel distribution due to differences in the individual jet trajectories (included angle) are also observed.
Technical Paper

The Effects of Injection Timing and Diluent Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2-D Imaging of OH and Soot

2000-03-06
2000-01-0238
The effects of injection timing and diluent addition on the late-combustion soot burnout in a direct-injection (DI) diesel engine have been investigated using simultaneous planar imaging of the OH-radical and soot distributions. Measurements were made in an optically accessible DI diesel engine of the heavy-duty size class at a 1680 rpm, high-load operating condition. A dual-laser, dual-camera system was used to obtain the simultaneous “single-shot” images using planar laser-induced fluorescence (PLIF) and planar laser-induced incandescence (PLII) for the OH and soot, respectively. The two laser beams were combined into overlapping laser sheets before being directed into the combustion chamber, and the optical signal was separated into the two cameras by means of an edge filter.
Journal Article

The Effect of Acetylene on Iso-octane Combustion in an HCCI Engine with NVO

2012-09-10
2012-01-1574
Prior studies have shown that fuel addition during negative valve overlap (NVO) can both increase temperature and alter composition of the charge carried over to main HCCI combustion. Late NVO fuel injection, i.e., near top dead center, can cause piston wetting and subsequent localized rich flames. Since acetylene is a product of rich combustion and is known to advance ignition, it is hypothesized that the species could play a chemical role in enhancing main combustion. The objective of this work is to quantify the effects of acetylene on HCCI combustion. While the research topic is specifically relevant to NVO-fueled HCCI operation, the experiments are conducted without NVO fueling to avoid uncertainties of NVO reforming reactions. Instead, a single post-NVO injection of iso-octane fuels the cycle, and acetylene is seeded into the intake flow at varying concentrations to simulate a reformed product of NVO.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Journal Article

Standardized Optical Constants for Soot Quantification in High-Pressure Sprays

2018-04-03
2018-01-0233
Soot formation in high-pressure n-dodecane sprays is investigated under conditions relevant to heavy-duty diesel engines. Sprays are injected from a single-hole diesel injector belonging to the family of engine combustion network (ECN) Spray D injectors. Soot is quantified using a high-speed extinction imaging diagnostic with incident light wavelengths of 623 nm and 850 nm. Previously, soot measurements in a high-pressure spray using 406-nm and 520-nm incident light demonstrated a minimal wavelength dependence in the complex refractive index of soot (m), as demonstrated by a near unity ratio of the non-dimensional extinction coefficients (ke,406 nm/ke,520 nm). The present work, however, demonstrates a significant difference in m for measurements with infrared incident light. During the quasi-steady period of the spray combustion event, the experimentally determined ke ratio (ke,623 nm/ke,850 nm) is 1.42 ± 0.27.
Technical Paper

Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas

2021-04-06
2021-01-0525
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold.
X