Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

CFD-Based Assessment of the Effect of End-Gas Temperature Stratification on Acoustic Knock Generation in an Ultra-Lean Burn Spark Ignition Engine

2023-04-11
2023-01-0250
End-gas temperature stratification has long been studied with respect to its effect on stoichiometric spark-ignition (SI) engine knock. The role of temperature stratification for homogeneous-charge compression ignition (HCCI) engine operation is also reasonably well understood. However, the role of temperature stratification in ultra-lean SI engines has had less coverage. Literature is lacking well-controlled studies of how knock is affected by changes in the full cylinder temperature fields, especially since cycle-to-cycle variability can impede a determination of cause and effect. In this work, the knocking propensity of specific cylinder conditions is investigated via 3D computational fluid dynamics (CFD) simulations utilizing a large eddy simulation (LES) framework.
X